§ 5. 2余弦函数的图象与性质再认识

正弦函数的图象

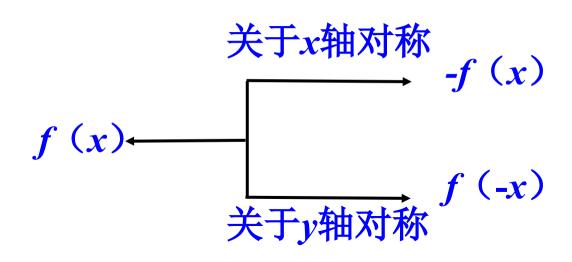
正弦函数的图象与性质认识

正弦函数性质的 再认识

五点(画图)法

图象的平移变换 (a>0, b>0)

图象的对称变换



课标要求

1. 能正确使用"五点法"、"图象变换法"画出余弦函数的简图2. 掌握余弦函数的性质,会求余弦函数的最小正周期,单调区间和最值.

表养要求

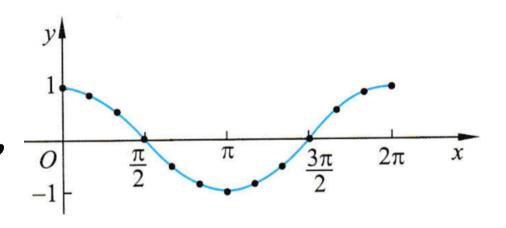
- 1. 通过画余弦函数的图象,培养直观想象素养.
- 2. 通过余弦函数的性质的应用,培养数学运算素养.

探究点1 余弦函数的图象

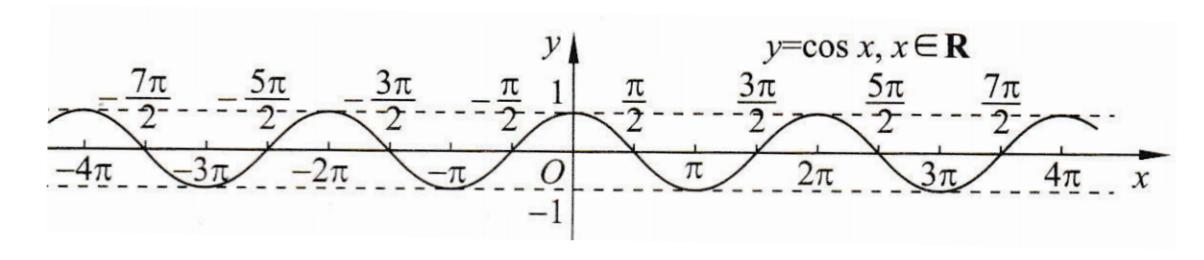
在区间[0, 2 π]上取一系列的x值,例如0, $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$,…, 2 π 列表 (如表).

\boldsymbol{x}	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$y = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1

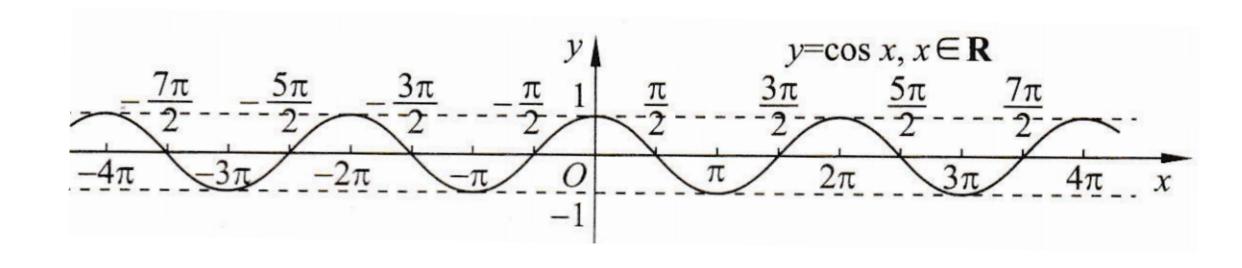
利用表中的数据,先在平面直角坐标系内描点,结合对函数*y*=cosx性质的了解,用光滑曲线将它们顺次连接起来,就可以得到区间[[0, 2π]上*y*=cosx的图象(如图).



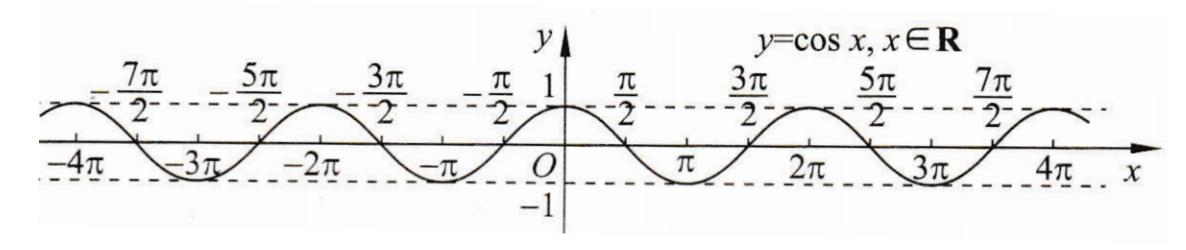
由周期性可知,函数y=cosx在区间[$2k\pi$, $2(k+1)\pi$], $k \in \mathbb{Z}$, $k \neq 0$ 上与在区间[0, 2π]上的函数图象形状完全相同,只是位置不同,将函数y=cosx, $x \in [0$, 2π]的图象向左、右平移(每次平移 2π 个单位长度),就可以得到余弦函数y=cosx, $x \in \mathbb{R}$ 的图象(如图).



余弦函数 $y=\cos x$, $x \in \mathbb{R}$ 的图象称作余弦曲线.

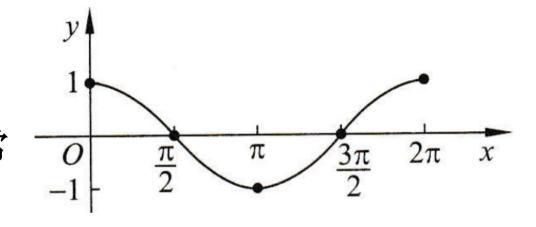


图中给出了余弦曲线的基本形状.在一个周期内,例如区间[0, 2π],以下五个关键点(0, 1) $(\frac{\pi}{2}, 0)$, $(\pi, -1)$, $(\frac{3\pi}{2}, 0)$, $(2\pi, 1)$ 这起着关键的作用,它们分别表示了余弦曲线与x轴的交点 $(\frac{\pi}{2}, 0)$, $(\frac{3\pi}{2}, 0)$, 余弦函数取得最大值时的点为(0, 1), $(2\pi, 1)$,取得最小值时的点为 $(\pi, -1)$.



根据余弦曲线的基本性质,描出这五个点后,函数y= $\cos x$ 在区间 $x \in [0, 2\pi]$ 的图象就基本确定了(如图).

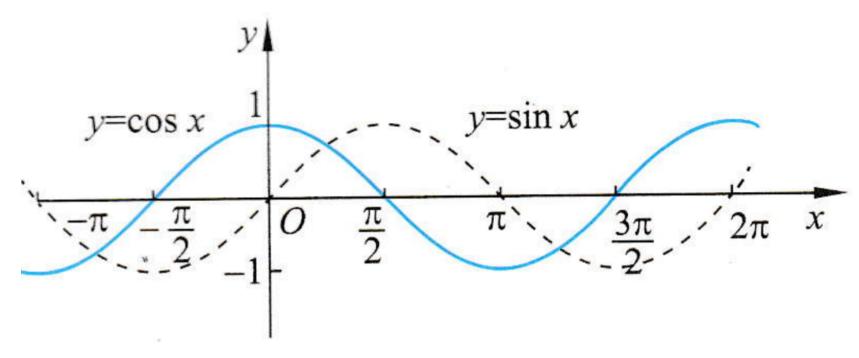
因此,在精确度要求不太高时,常常 先描出这五个关键点,然后用光滑曲线 将它们顺次连接起来,就得到余弦函数 的简图.这种作余弦曲线的方法也称为 "五点(画图)法".



由诱导公式 $\cos x = \sin \left(x + \frac{\pi}{2}\right)$ 可知, $y = \cos x$ 的图象就是函数 $y = \sin x$

 $\left(x + \frac{\pi}{2}\right)$ 的图象.即余弦函数y=cosx的图象可以通过将正弦曲线y=sinx

向左平移 $\frac{\pi}{2}$ 个单位长度得到(如图).



例4 画出函数 $y=\cos(x-\pi)$ 在一个周期上的图象.

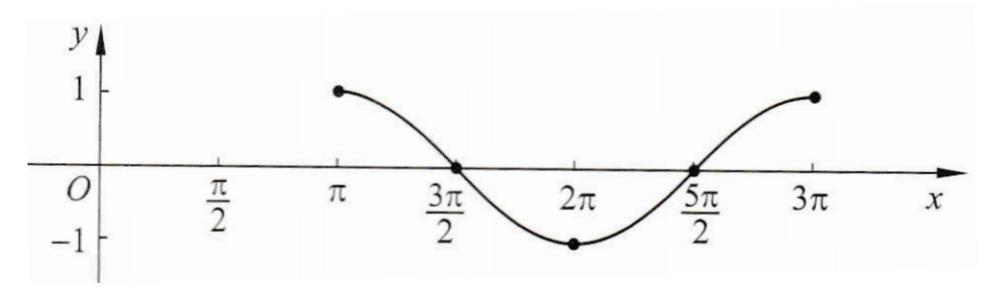
解 按五个关键点列表(如表).

$x-\pi$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
\boldsymbol{x}	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$	3π
$y = \cos(x - \pi)$	1	0	-1	0	1

于是得到函数 $y=\cos(x-\pi)$ 在区间[π , 3π]上的五个关键点为

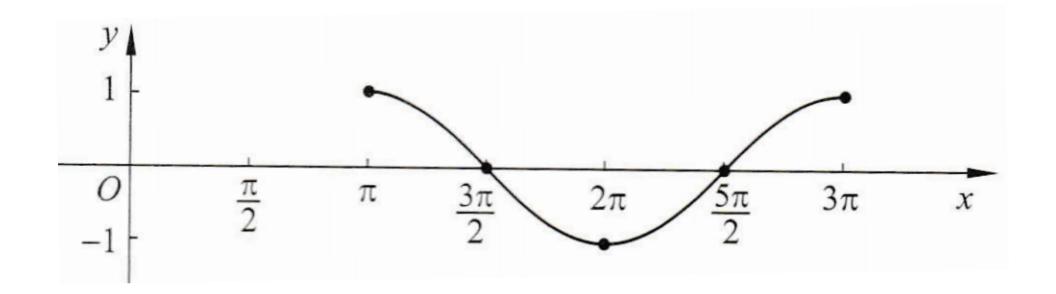
$$(\pi, 1), (\frac{3\pi}{2}, 0), (2\pi, -1), (\frac{5\pi}{2}, 0), (3\pi, 1).$$

描点,并用光滑曲线将它们顺次连接起来,就画出函数 $y=\cos(x-\pi)$ 在一个周期上的图象(如图).



例4 画出函数 $y=\cos(x-\pi)$ 在一个周期上的图象.

解 也可以利用诱导公式 $y=\cos(x-\pi)=-\cos x$,画出 $y=-\cos x$ 的图象.



以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/458053070013006135