
Assignment 6

201318013229054

Jun Zhang

January 8, 2014

1 Problem 1

For the undirected bipartite graph G = (V,E), partition V into two sets L,R. Then construct a network
(G′ = (V ′, E′), s, t, c) as follows:

(1) The vertex set is V ′ = V ∪ {s, t}, where s and t are two new vertices.

(2) E′ contains a directed edge (s, u) for every u ∈ L; a directed edge (u, v) for every edge (u, v) ∈ E,
where u ∈ L and v ∈ R; and a directed edge (v, t) for every v ∈ R.

(3) Each edge (s, u) for every u ∈ L has a capacity of the positive weight of vertex u; each edge
(u, v) for every edge (u, v) ∈ E, where u ∈ L and v ∈ R has a capacity of +∞; each edge (v, t) for
every v ∈ R has a capacity of the positive weight of vertex v.

The cut (S, S̄) is defined as follows: A cut partition V into two sets S, S̄, where the source s ∈ S, and
the sink t ∈ S̄. Find a minimum-capacity cut (S, S̄) in the network. Define L1 = L∩S,L2 = L∩ S̄, R1 =
R ∩ S,R2 = R ∩ S̄. Given such a cut, the corresponding (supposed) vertex cover will be X = L2 ∪ R1.
It is clear that capacity(S, S̄) = |X|. Thus the optimal cover problem can be turned into the minimum
cut problem.

Theorem 1.1. For every cut (S, S̄) of finite capacity, define the set X = L2 ∪ R1, the X is a valid
vertex cover and |X| = capacity(S, S̄).

Proof. The cut is finite capacity would mean that each of the infinity edges either starts inside the L2

or ends in the R1 (or both). So all the edges of the original graph at least either have one endpoint in
L2 or R1. It is clear that capacity(S, S̄) = |X|.

Theorem 1.2. For every valid vertex cover X, define the cut (S, S̄) as,

S = {u ∈ L : u /∈ X} ∪ {u ∈ R : u ∈ X}, S̄ = {u ∈ L : u ∈ X} ∪ {u ∈ R : u /∈ X}

The (S, S̄) has finite capacity and capacity(S, S̄) = |X|.

Proof. Assume the contrary that an edge going from u to v is cut by this cut and has infinite capacity.
Then u must be in L S and v must be in R ∩ S̄. So neither u nor v are in X in the original graph
but there is an edg ween these two vertices. That means that X is not a vertex cover which is a
contradiction. It is clear from the way the cut is defined that its capacity is |X|.

2 Problem 2

2.1 Question a

The following matrix is not re-arrangeable: 0 1 0
1 0 1
0 1 0



1

2.2 Question b

For the n× n matrix M , construct a bipartite graph G = (V,E) as follows:

(1) The vertex set V is partitioned into two sets R,C. The set R has n vertices, each ri ∈ R
represents Row i; The set C has n vertices, each cj ∈ C represents Column j.

(2) E contains a undirected edge (ri, cj) for every ri ∈ R and cj ∈ C, where mi,j = 1.

Swapping rows can reorder the sequence of rows, swapping columns can reorder the sequence of
columns. After several swapping actions, all the diagonal entries of M may be equal to 1. That means
there exist a perfect matching between rows and columns.

Theorem 2.1. If there exist a perfect matching of the bipartite graph, the matrix is re-arrangeable.

Proof. There are n edges in the perfect matching of the bipartite graph. For the kth edge (ri, cj), swap
original Row i with Row k and original Column j with Column k of matrix m. Because (ri, cj) is an
edge, the original mi,j = 1. After swapping, mk,k = 1, then Row k and Column k is fixed. Thus, after
n pairs of swapping, the matrix is re-arranged. (Original Row i means the original sequence number of
the row is i, Row i means the ith row now. The column number is defined analogously. These definitions
are used in the rest of the discussion for this problem.)

Theorem 2.2. If the matrix is re-arrangeable, there exist a perfect matching of the bipartite graph.

Proof. The matrix is re-arrangeable, so after several swapping actions, all the diagonal entries of M
may be equal to 1. For the kth diagonal entry mk,k = 1, suppose its original row number is i, and
original column number is j. The original mi,j = 1, so match ri with cj in the bipartite graph. After n
matches, it becomes a perfect matching of the bipartite graph.

Now the problem becomes the perfect matching problem in a bipartite graph. We can just apply
Hungarian Algorithm1 to solve the perfect matching problem, whose complexity is O(n3). Because the
corresponding lecture is about network flow, we use network flow to solve the perfect matching problem.

For the undirected bipartite graph G = (V,E), V is partitioned into two sets R,C. Then construct
a network (G′ = (V ′, E′), s, t, c) as follows:

(1) The vertex set is V ′ = V ∪ {s, t}, where s and t are two new vertices.

(2) E′ contains a directed edge (s, u) for every u ∈ R; a directed edge (u, v) for every edge (u, v) ∈ E,
where u ∈ R and v ∈ C; and a directed edge (v, t) for every v ∈ C.

(3) Each edge has capacity 1.

Then try to find a um flow whose flow value is equal to n. Using network flow to solve the
perfect matching problem has been discussed in the lecture. The complexity is O(n3).

3 Problem 3

Getting the max-flow or min-cut in the G, we have the residual graph Gf . Find all the vertices reachable
from s in the residual graph Gf and we’ve found a min-cut (S, S̄) in G. Look at the same residual graph,
starting at t. Find the group of vertices reachable from t in the reverse direction of the directed edges
(meaning all the vertices which can reach t). This group is also a min-cut (T̄ , T). If that cut is identical
to the original cut, which is (T = S̄), then there is only one min-cut. Otherwise, the min-cut is not
unique. Searching the vertices reachable from s and the vertices which can reach t by using BFS or DFS
takes O(n2) (Adjacency Matrix).
Proof. If S∪T ̸= V , then there exists vertex x /∈ S∪T . In Gf , s can not reach x and x can not reach t.
In G, fin(x) = cin(x), fout(x) = cout(x) and fin(x) = fout(x), so we have cin(x) = cout(x). The min-cut
(S, S̄) has two cases that x ∈ S or x ∈ S̄. The min-cut is not unique.

1Kuhn H W. The Hungarian method for the assignment problem[J]. Naval research logistics quarterly, 1955, 2(1-2):
83-97.

2

4 Problem 4

For n weighted open intervals. The ith interval covers (ai, bi) and weighs wi. Then construct a weighted
network (G = (V,E), s, t, c, w) as follows:

(1) The vertex set is V =
(n∪
i=1

{ai, bi}
)
∪ {s, t}.

(2) The edge set is E = E0 ∪ E1 ∪ E2 ∪ E3. E0 contains a directed edge (ai, bi) for every interval.
E1 contains directed edges (bi, aj) where (bi ≤ aj). E2 contains a directed edge (s, ai) for every ai
and E3 contains a directed edge (bi, t) for every bj .

(3) Each edge (ai, bj) ∈ E0 for every interval has a capacity of 1 and a weight of −wi (Use the
opposite value, so that we can apply the minimum cost flow algorithm, which has been discussed in
the lecture, to solve the problem). Each edge in E1 ∪E2 ∪E3 has a capacity of 1 (or +∞, any value
not less than 1 is OK) and a weight of 0.

Then apply the minimum cost flow algorithm to find a flow with flow value k and the cost is mini-
mized on the network. The opposite value of the minimum cost result is the um weight of feasible
intervals.

Proof. In the flow, every s-t path goes through one or more edges in E0. Because it should go
through an edge in E1 every time before it goes through an extra edge in E0, the path represent a
feasible interval arrangement which covers any point in the real axis no more than one time. The flow
value k constrain the number of such feasible interval arrangements to be no more than k. Finally, the
opposite value of the cost result is the weight of feasible intervals.

The complexity of the algorithm is O(n3 log nmin{log nC, n2 log n}) 2 (suppose |E| = |V |2).

5 Problem 5

For the n little dogs and n kennels, construct a weighted bipartite graph G = (V,E) as follows:

(1) The vertex set V is partitioned into two sets D,K. The set D has n vertices, each di ∈ D
represents Dog i; The set K has n vertices, each kj ∈ K represents Kenel j.

(2) E contains a undirected edge (di, kj) for every di ∈ D and kj ∈ K.

(3) Each edge (di, kj) weights the travel fee for di to arrive at kj .(The travel fee is fixed for a given
dog (xi, yi) to arrive at a given kennel (xj , yj), that is |xi − xj |+ |yi − yj |.)

Then the problem becomes the minimum weighted perfect matching problem in a bipartite graph. We
can apply Kuhn-Munkres Algorithm3 to solve the minimum weighted perfect matching problem, whose
complexity is O(n4) (or O(n3) by using a slack value sj for every kj ∈ K). Because the corresponding
lecture is about network flow, we use network flow to solve the minimum weighted perfect matching
problem.

For the undirected bipartite graph G = (V,E), V is partitioned into two sets D,K. Then construct
a weighted network (G′ = (V ′, E′), s, t, c, w) as follows:

(1) The vertex set is V ′ = V ∪ {s, t}, where s and t are two new vertices.

(2) E′ contains a directed edge (s, di) for every di ∈ D; a directed edge (di, kj) for every edge
(di, kj) ∈ E, where di ∈ D and kj ∈ K; and a directed edge (kj , t) for every kj ∈ K.

2Goldberg A V, Tarjan R E. Finding minimum-cost circulations by canceling negative cycles[J]. Journal of the ACM
(JACM), 1989, 36(4): 873-886.

3Munkres J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and
Applied Mathematics, 1957, 5(1): 32-38.

3

(3) Each edge (s, di) and (kj , t) has a capacity of 1 and a weight of 0. Each edge (di, kj) has a
capacity of 1 and a weight of the travel fee for di to arrive at kj .

Then apply the minimum cost flow algorithm to find a flow with flow value n and the cost is minimized
on the network. The complexity of the algorithm is O(n3 log nmin{log nC, n2 log n}).

6 Problem 6

For the weighted undirected graph G = (V,E), we construct a network (G′ = (V ′, E′), s, t, c) as follows:

(1) The vertex set is V ′ = V ∪ Ve ∪ {s, t}, where s and t are two new vertices, and Ve contains a
vertex vij for every edge (i, j) ∈ E.

(2) E′ contains a directed edge (s, vij) for every vij ∈ Ve; a pair of directed edges (vij , vi) and
(vij , vj) for every vij ∈ Ve; and a directed edge (vi, t) for every vi ∈ V .

(3) Each edge (s, vij) has a capacity of the weight of edge (i, j) ∈ E. Each pair of edges (vij , vi)
and (vij , vj) has a capacity of +∞. Each edge (vi, t) has a capacity of α.

Then find a minimum-capacity cut (C, C̄) of finite capacity. Let S = C ∩ V .

Theorem 6.1. vij ∈ C if and only if both vi ∈ C and vj ∈ C.

Proof. The cut is finite capacity would mean that each of the infinity edges either starts inside the
Ve ∩ C̄ or ends in the V ∩ C (or both). If vij ∈ Ve ∩ C, then both vi ∈ V ∩ C and vj ∈ V ∩ C. If both
vi ∈ V ∩ C and vj ∈ V ∩ C, assume vij ∈ Ve ∩ C̄, we can get a new cut (C ′, C̄ ′) that C ′ = C ∪ {vij}.
Because vij only has edges (s, vij), (vij , vi) and (vij , vj), the new cut (C ′, C̄ ′) has capacity(s, vij) less
capacity than the cut (C, C̄), which is a contradiction.

Theorem 6.2. capacity(C, C̄) = e(V)− e(S) + α|S|

Proof. The cut (C, C̄) cuts each edge (vi, t) for every vi ∈ V ∩C, each edge (s, vij) for every vij ∈ Ve∩C̄
and infinity edges either starts inside the Ve ∩ C̄ or ends in the V ∩ C. Thus,

capacity(C, C̄) =
∑

vij∈Ve∩C̄

capacity(s, vij) +
∑

vi∈V ∩C

capacity(vi, t) = e(V)− e(S) + α|S|

Theorem 6.3. There is a subset S with cohesiveness larger than α if and only if the min-cut (C, C̄) in
G has capacity less than e(V).

Proof. The min-cut in G has capacity less than e(V) then C ̸= {s}, then |S| > 0.

capacity(C, C̄) = e(V)− e(S) + α|S| < e(V)
⇔ e(S) > α|S|
⇔ e(S)/|S| > α

Theorem 6.4. There is a subset S with cohesiveness = α if and only if the min-cut (C, C̄) in G has
capacity = e(V) and C ̸= {s}.

Proof. If C ̸= {s} then |S| > 0.

capacity(C, C̄) = e(V)− e(S) + α|S| = e(V)
⇔ e(S) = α|S|
⇔ e(S)/|S| = α

Suppose there are n vertices and m edges in G, then there are |V ′| = m+n+2 vertices and |E′| = 3m+n
edges in G′. The complexity of the algorithm is O(m3).

4

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/46514314200

3011311

https://d.book118.com/465143142003011311
https://d.book118.com/465143142003011311

