Perl/Tk Tutorial - Create GUI with Perl's Tk Module

I O AU C I OM, 1ttt ettt ettt e e et e eeeee e e e eee e e et et eeeeeeseeeeeseeeeeesetesesteeeresssheseseeerarsrrrsrrbsserrrrrs e rrrrrrrrrrrerrnn 2
A DD I CAIONISttt ettt stetstesttetstetetstetstseststststststetstetststsrstste s tanere s eeesrrrreeeserras 2
PRl OSODNY .ttt ettt ettt ettt et te ettt e eeteeee et ettt eeet et eeteaa b re et s eet et et rrereeeeeeaeeeeeeas 2
Perl/TK REQUITEIMEIIES. . uuvvveeeieeeeiieietise e e e et ee e e e e e et eee et eeeeeeeteeetsseeeeeeeeeteansssseeeeeeeeeeennnsssseeeseeeeeansssssseereeeeeeneeeeeess 3
InStalling/USING Perl. ... i i iiiueiiiiiiiiii ittt e et e e e e et e ettt e see e et tes et et eeseeteenes e e eeseeeeeiesse e e eeeseeeeensstreeeseseeeennnnes 3

HEIO WOTIA. ...ttt ettt eee e eeeeseseeeeeeeeeeseseeesesseeseeessessesesesessssessesssssssesssessseseeeeseersnn 3

GO ODEIIEILC. ..ttt e e ettt e et ettt e ettt eeee et e et teeetttettee et heeeetbet et i ettt st e seeette et et tteeererreres 13
O OV ittt ittt ettt et e e et e ettt et e ettt ettt e eeeeet et eee et eeeeeee e et ettt e e e et ee s et tan b et ee sttt e eeeserbrr et st 14
Widgets 3 : Radiobutton, CheCKDUtON. . ..uuueeeeeeeeeeeeeeeeee ettt ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeresneeeeerereneeeses 15
RN ODUE 0N, 1o eiieiiiiiiiie ettt ettt ettt et et et et et e e et et e e e e et et et e e e e e e et et e e e ee e et e e et et e eeee b et ettt e et e et et et e e e et e et e et t e e et et et e e e eerrrrrnns 15
e CK DU O, ettt e e et et ee ettt e et e e ettt eets et e e e e et eeent e e se et et enss e e e e seeeeennntsseeeeeseeeee st rrereeeeeeeannns 16
WA GEtS 4 o LIS 0K, e iiii it iiitttieeee sttt ettt e e ettt ee ettt e e e ettt e ettt e e e e e et e eett e e e e eeeeeeennt et e et s e ee et ea b e st seetett ettt eee et e rrr et rrr e 18
LISt DO K sttt teeteeeeeteeeesteeeeseeseteeeesretesseseseteeeeseseseessssteeeeetesseesterer st sesesseererererrerrrrerrreeerres 18
Widgets 5 : Menubutton, Menu, OptiONIMIENU.zesesesesssesesesseseeeesessssssssesssessessssssseseeeesseesneeeeseesnnns 20
ML CNUDULEON . .tteeeeeeeeeeeeeeee ettt et et et ettt et eeeeeeee e eee et e eeeteeeetsseeeeeeeeeeaaet e eeeeeeeeeaat s re et eeeeens 20
VLMWL ettt ettt ettt ettt e e eeeee ettt te et ee ettt ettt a ettt eeere e et tta et reeeeeeeeaae et reeereeeeeaanns 21
ODUIONINIEIIU L.uutttteiisse et e e e e e e e e e ee et eeeeseeeee ettt e e s e e e e ten et ee e e s s e e et e et eeeee s s e e et eens e e e e seeee e et seeeseseeeeinsterseseseeseeennrnnnns 23
Some more Widgets - Canvas, Message, Adjuster, SCrolled.iueeiureiiiiiiiiiiiiiiiiie st eeieiieeeeeeeeieiiiieeeeeeeeeeeereeeeeeeeeees 24
CATIVAS ettt oot ettt ettt ettt ettt et et teeeetteeeee ettt taettaeee e ettt teaa e eeee e et eeaaet it baeereeeeeeerererstaneas 24

A U S T . ittt ee et e e et ee ettt e e ettt ettt ee e e ettt eee et et eeet et ten et eeeesseteete ittt teeeeetettan st e et e ettt teant ittt e eeeseeerrrrrrrrrnnn 24
SOTOIIEA. ettt e e et e ee et e e e e ettt ettt ettt e et e ten ettt et e eeete ettt et e ettt e ean e b et eeetee e e e teeettttetetrrrrrrres 25
Geometry Management : Grid, PacK.......oooiiiiiiiiiiiiiie et e ettt et et e e et e e e e et e et et e et et et e st e eereeees 26
TR sttt e ettt i irereeieeeeeeeeeieeitieteeieeeserrrsitteteertesssrrrstittteirtrssbertetttttiitettrrttette ettt b et se st s et et e rrrrrrrees 26
DACK ittt e e et eeeteeeeetteettteeeeteeettiaettteeeeeeeette ettt e eeesee et e tet it b et seseeteaant sttt eeeeeeeeess 27
Some CommON Wid@et O DtiONS. ..uueeiiiiiieietteeeeieeeeieeeett ettt e ettt ieeiteeeeeeeeetteietssseeeseeeetensissseeeseeeeeeeaetsrseeseeeeeeiaaseeeeeeeeeseeeeees 28
S0mMe TK COMIMANAS. ..oiiiiiiiiiii et e ettt e e e e e ee ittt e e e ee e e eeeeeeeseeeseeeeeeeeeeeeteseeeeeeeeeeeeeeeseeeeeeeeeeseeeeeeseeeeeeeeeeeeeeeseeees 29
BN, ettt ee e et ettt et eeeree et tee et teteet ettt et bee ettt teen et e et s ettt ten e ettt ettt e ettt s e e et 29
NOW WAL, oottt e ettt ee et e et e ettt ee et eeeeeeeee et seeereeeeeeenetteeeeeeeeeeeeatnrreereeeeeeeens 31
RO O I e ettt ettt ettt ettt ettt ettt et ettt ettt e ettt et et ee et e et etae e aaeeeeeeeeeaattresraees 31
BlOOKS ittt et ettt eeeeee et teetteeeteeeeteeee e eeeteettete it reeeee ettt ettt e e e e sttt e ea b et reeetetenrrrrrrren 31
Y = 0L | DT TTN 31
EXEeINAl SItES. ..uuuuuunen sttt nnrneernes 31
A DD CIIAIX ettt ettt ettt ettt eeteetetteteeteett et teettteeeeeteettetetttreeteeseetta it e e eeeseeetae et e s b e te e ettt tatrtrbrbeesererrrrnres 31
AppendiX A : ADOUL the AULNOL. ...uuueeiiiii ittt e e e ettt teseteeeeeseeteeteisteeeeeeeeetaansseeeeeesrsssrnss 31
Appendix B : Commonly Made mistakes in Perl/TK............uuueuuueueuuersriseeeesseseseeesseseesessessseeiessneeeeeeeeeeeeeeeeens 32

ApPPENndiX C i Tl TR AN Porl T K ittt ittt ittt ettt ettt ettt e steeeneeee et e seeeea e seeeeanesseeea e seeeeanseeresnsseesennsseeeennsseeensennnse 32

ApPendiX E - FeedBaCKS. ... uuuuuuuetitetiteetetteeettt ettt eeeeerees 33
ApPendiX F : COMMIEIIES. . oiiiiiiieetteeeee et ieei e e e e ettt ettt et et ettt ieeetteeeeeeeeeeetittsseeeseeeeeeaassseeeeeeeeeeenanssssseseeeressssssrneeess 33
DX ittt ettt ittt eeetetetteteeeee ettt tee it reeeee ettt eae ittt b ettt e et ttee bt e e et et teeenr e eeeess 33
Dt OAUC I ON . 1 sttt e ettt e e ettt ettt e e e et ee e ettt et e e eeeeee ettt e s e se et e e ettt bbb et ettt ettt e e b et se ettt ettt e e e s ettt eeeees 33
HEIIO WOTLA. ottt e e e e ee ettt e e e e et ten ettt eeseeeeee st ee e e eeeeeeee st eeesseeeeeanntse e s e e e st eeeess 36
WAL Lottt ettt ettt ettt ettt e ettt ettt ete et et e e ettt aae ettt eeeeeeeeeeaenss 38
WA GOt 2ottt ettt ettt e ettt e ettt te et et et ettt aae ettt e eeeeeeeess 40
VA GOt S ittt et ittt e et ee e eees et ettt ettt reeeetttete b e eee ettt teat e e et st eeeseeeeess 43
WA GOt B, ittt e ettt e e e e et ettt e e ettt ee et et e e ettt ettt eeeeet ittt te e e eteeeettea e e et e e e e s et eeeess 44
GeomEetrY MaAna@eMIENt. ... uuueeesssesss st sesrsrstse sttt errrrrnss 44
INOW W A, sttt ettt eeeeeeeseseeeeeeeeseeseeseeeeeeseseesssssseeseseseseseesessesseesenesererneeeeerres 46
A DD CIIAIX ettt ettt ettt e e ettt et teeetee ettt teetteeeeeseetteeetteseetee st et ta ittt b e bete ettt eeant ittt b et bererrrrnrees 48
Introduction

Perl/Tk (also known as pTk) is a collection of modules and code that attempts to wed the easily
configured Tk 8 widget toolkit to the powerful lexigraphic, dynamic memory, I/O, and object-oriented
capabilities of Perl 5 In other words, it is an interpreted scripting language for making widgets and
programs with Graphical User Interfaces (GUI)

Perl or Practical Extraction and Report Language is described by Larry Wall, Perl's author, as follows:

"Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from those text files,
and printing reports based on that information It's also a good language for any system management tasks The
language is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal)"
The perlintro man page has this to say

Perl is a general-purpose programming language originally developed for text manipulation and now used
for a wide range of tasks including system administration, web development, network programming, GUI
development, and more

Tk, the extension(or module) that makes GUI programming in perl possible, is taken from Tcl/Tk Tcl(Tool Command
Language) and Tk(ToolKit) was created by Professor John Ousterhout of the University of California, Berkeley Tcl is a
scripting language that runs on Windows, UNIX and Macintosh platforms Tk is a standard add-on to Tcl that provides
commands to quickly and easily create user interfaces Later on Tk was used by a lot of other scripting languages like
Perl, Python, Ruby etc

Applications

Perl has been used since the early days of the web to write CGI scripts, and is now a component of the popular LAMP
(Linux/Apache/MySQL/Perl) platform for web development Perl has been called "the glue that holds the web together"
Large systems written in Perl include Slashdot, and early implementations of Wikipedia and PHP

Perl finds many applications as a glue language, tying together systems and interfaces that were not specifically
designed to interoperate Systems administrators use Perl as an all-purpose tool; short Perl programs can be entered and
run on a single command line

Philosophy

Perl has several mottos that convey aspects of its design and use One is There's more than one way to do it
(TMTOWTDI - usually pronounced 'Tim Toady') Another is Perl: the Swiss Army Chainsaw of Programming
Languages A stated design goal of Perl is to "make easy tasks easy and difficult tasks possible"

Perl is free software, and may be distributed under either the Artistic or the GPL License It is available for most
operating systems but is particularly prevalent on Unix and Unix-like systems (such as Linux, FreeBSD, and Mac OS
X), and is growing in popularity on Microsoft Windows systems

http://www.bin-co.com/tcl/

Perl/Tk Requirements

Before starting with the tutorial, make sure you have the following things If some are missing you still can learn perl -
but you will not be able to use it to its full power

1. ActivePerl from http://wwwactivestatecom/ActivePerl/ for windows - for programming in Windows Linux don't
need any special outside interpreter because it already has it in most of the distributions

2. A good text editor I would recommend Crimson Editor(http://wwwcrimsoneditorcom/) for Windows and
XEmacs for Linux

Installing/Using Perl

In Unix/Linux you can execute your perl scripts by typing "perl <filename>" at command prompt But before you do
that make sure you have both Perl and its Tk module Most linux distributions have perl - but quite a few don't have the
Tk module Make sure that the system you are using have the Tk module If you don't have it, go to http://wwwcpanorg
and download the perl module Or you can use the perl's CPAN module to install the Tk module To do this, open a
terminal and enter the following command

perl -MCPAN -e shell

cpan> install Bundle: :CPAN

cpan> reload cpan

cpan> install Tk

Another(and a much easier) way to do this is to get a rpm of Perl/Tk and installing it with the command
rpm -ivh FILENAME

If you are using Ubuntu, a easy way of installing Perl/Tk is using this command
sudo apt-get install perl-tk
If you are using Windows, download ActivePerl and install it Then you can execute any perl file by double clicking it

Two more things before we begin the tutorial I will be teaching perl/tk and I expect you to know how to program in perl
I may ignore some of the perl coding conventions like including use strict;, -woruse warnings; in my
examples The examples have only one purpose - to demonstrate the feature that will be taught in that part of the
tutorial Sorry about that - but I have to keep my tutorial's example scripts short and to the point

Finally, this is a tutorial for Perl/Tk only - 1 will not be teaching perl here So if you know perl, continue But if you are a
beginner to perl, I would recommend that you read my perl tutorial

Hello World

Let us begin, as all other tutorials begin, with the "Hello World" program Create a file called "Hellopl" and enter the
following into it

#!/usr/local/bin/perl
use Tk;
Main Window
my $mw = new MainWindow;
my $label = $mw -> Label(-text=>"Hello World") -> pack();
my $button = $mw -> Button(-text => "Quit",
-command => sub { exit })

-> pack();

MainLoop;

The first line - #! /usr/local/bin/perl is not needed in windows In Linux, it tells the name of the script
language processor In our case it is perl Don't understand what that means? Don't worry your gray cells over it Just put
it at the top of the file

The second line - use TK; tells the interpreter that our program will use the Tk module This line is an absolute must

http://www.bin-co.com/perl/tutorial/
http://www.bastille-linux.org/perl-rpm-chart.html
http://www.cpan.org/
http://www.crimsoneditor.com/
http://www.activestate.com/ActivePerl/

in all GUI programs you make using perl When the interpreter encounters this line, it will load the Tk components that
we will be using to create our program

The third line - This is a comment Any line that starts with a '# char is a comment Comments are not of any use in the
program It is used by programmer to talk to themselves A programmer cannot be expected to remember every thing a
script does So he uses a comment to write it down Next time he edits the script, he can read the comment and
understand what the program is for It is good practice to make as much comments as possible

The fourth line, my $mw = new MainWindow;, will create a window into which the GUI elements will be placed
The variable $mw is a object of type 'MainWindow' We will have to use this element when we want to place any
widget inside it

The fifth line - $mw -> Label (-text=>"Hello World") -> pack(); makes alabel and writes "Hello
world" in it You can change the text to any thing you like Note the structure of the command -

$label - This variable assigned to that particular widget Ever widget must have a UNIQUE variable This name will
be used when ever that widget must be accessed

$mw -> - $mw is the MainWindow's object We will be placing our label widget inside this window

Label(-text=>"Hello World") - 'Label' is the name of the widget A widget is a user interface object in X
graphical user interfaces Confused? Lets just say that it is the name of the object that appears on screen There are
many other widgets too If you want to display a button, you use the button widget For text, you use the text widget For
entry, you guessed it, the entry widget If you want, you can see more about widgets

-text=>"Hello World" - The option for this widget This option says that this widget must be given the text "Hello
World" Options change according to the widgets - a button widget will not have all the options of the label widget and
vise versa But there will be many common ones

Please note that operator used here is '=>' as opposed to the one used earlier '->'in $mw -> One uses the minus(-) sign
while the other uses the equals(=) sign Do not confuse between these two

You can keep writing other options can also be written here For example, let us make a label for showing the text
"Hello World" The other lines are same as the Hello World program

$mw -> Label(-text=>"Hello World", -font=>"courierfont",-relief=>"raised") ->
pack();

In this example, a lot more options are used The font option is used to tell which font must be used to make the text and
the relief option tells whether the text should appear raised, sunken, flat etc To know all the options for a particular
widget, read the manual that comes with Perl It lists every widget and every option they have If you are going to
program in Perl, you will find your self peeking into the manual every few minutes The most important and most
commonly used options are listed here

All options must separated by a comma But as you have noted, this line is a little difficult to read As the number of
options increase, the more difficult to read it So a more readable version is
$mw -> Label(-text=>"Hello World",
-font=>"courierfont",
-relief=>"raised")
-> pack();

Next comes the -> pack() ; This will pack the widget '$label’ into the window '$mw' 'pack’ is a geometry manager
Another geometry manager is 'grid' Personally, I like grid better Once again, putting all this in one line is an eye sore -
so you can put this part in the next line

my $label = $mw -> Label(-text=>"Hello World")
-> pack();

In this case, pack has no options within it But that is not always the case

my $label = $mw -> Label(-text=>"Hello World")
-> pack(-side=>"1left",
-anchor=>'w');

You don't have to pack the widget in the same line of creating it - but it is convenient in small programs You can pack
the widget later using the widget's variable For example

http://www.bin-co.com/perl/perl_tk_tutorial/commen_options.php

my $label = $mw -> Label(-text=>"Hello World"); #We created the widget
$label -> pack(-side=>"left", -anchor=>'w'); #We pack it in another line

So we have the final syntax of how to create and display a widget
my $WidgetVariable = $Window -> WidgetType(?0ption 1=>Value 1, ?0ption 2=>Value
2 ?7?) -> pack();

The next three lines

my $button = $mw -> Button(-text => "Quit",
-command => sub { exit })
-> pack();

will create and display a button Here the widget variable is '$Sbutton' When we look at the options, we will find two
options - 'text' and 'command' The given text is Quit - so the button will have the text "Quit" on it The command option
determines what should happen when the user click on the button You can specify a function to execute when the user
clicks on the button In this case the program will exit when this button is pressed One can also call functions that you
have created from here

#!/usr/local/bin/perl

use Tk;
Main Window
my $mw = new MainWindow;
my $label = $mw -> Label(-text=>"Hello World") -> pack();
my $button = $mw -> Button(-text => "Quit",
-command =>\&exitProgam)

-> pack();

MainLoop;

sub exitProgam {
$mw->messageBox (-message=>"Goodbye") ;
exit;

}

The next line - MainLoop; is the Main Loop or the Event Loop Its job is to invoke callbacks in response to events
such as button presses or timer expirations If this line is missing, the program will run and exit with out waiting for the
user to do any thing This is another one of those 'absolute musts' of Perl/Tk programming

Now Perl puritans will raise a great hue and cry and say that this is not the way to print "Hello World" The "pure"
method is the following

#!/usr/local/bin/perl
print "Hello World"

Putting things in perspective, I am teaching Perl/Tk - not Perl The above is the Perl method of doing it My method is
the pTk method of doing it

Widgets 1 : Button, Entry, Label

A widget is a user interface object in X graphical user interfaces Confused? Lets just say that it is the name of the
object that appears on screen There are many types widgets If you want to display a button, you use the button widget
For text, you use the text widget For entry, you guessed it, the entry widget

Syntax:

my $WidgetVariable = $Window -> WidgetType(?Option 1=>Value 1, ?0Option 2=>Value 2 ??) -> pack();

Three things need to be said about widgets First is the widget variable This I have explained earlier The widget
variable of all widgets must be unique and will be used whenever that widget needs to be accessed Second is the
options Each widget has some options which can be used to configure it This is usually done when the widget is
declared, but it can be done afterward also The final thing is commands Each widget has some commands which also

can be used to configure it or make it do some thing

But before we begin, we need to know a little about the pack command I have explained this earlier but just doing it
one more time so that you don't have to push the back button Pack is a geometry manager Another geometry manager
is 'grid' - we will explore that latter Pack is much more simpler than grid

The line $hello -> pack; tells the interpreter to pack the widget called "$hello"

Button

This will make a button It can be configured to execute some code when the button is pushed This will usually refer to
a function so when the button is pushed, the function will run An button is shown below This button is created using
HTML input tag

Some Options
-text=>"TEXT" HTEXT will be the text displayed on the button H
-command=>CALLBACK HCALLBACK will be the code that is called when the button is pushed H

#!/usr/local/bin/perl
use Tk;

Main Window
my $mw = new MainWindow;

my $but = $mw -> Button(-text => "Push Me",
-command =>\&push_button);
$but -> pack();

MainLoop;
#This is executed when the button is pressed

sub push button {
whatever
}

You may have noticed that I used a slash(\) in the command callback (- command =>\&push button) ;) Make
sure that the slash stays there - to see why, go to the Most common mistakes by Perl/Tk beginners

Entry

An entry is a widget that displays a one-line text string and allows the user to input and edit text in it When an entry
has the input focus it displays an insertion cursor to indicate where new characters will be inserted An entry element is
shown using HTML

Some Options

-width=>NUMBER ‘Width of the input field NUMBER should be an integer

The contents of the variable VARIABLE will be displayed in the widget If the text in

-textvariable=>\$VARIABLE the widget is edited, the variable will be edited automatically

The state of the input field It can be normal, disabled, or readonly If it is readonly

. =>STATE
state=>S the text can't be edited

Some Commands

Syntax ‘ ‘Description ‘ ‘Example

The text inside input field can be taken by this

Swidget -> get(); command

$name = $ent -> get();

$widget -> delete(FIRST?,LAST?);

‘Delete one or more elements of the entry FIRST is ‘ ‘$ent -> delete(0,'end");

the index of the first character to delete, and LAST
is the index of the character just after the last one
to delete If last isn't specified it defaults to
FIRST+1, ie a single character is deleted This
command returns an empty string

Insert the characters of STRING just before the
character indicated by index Index is O for the first
character The word "end" can be used for the last
character

Swidget -> insert(index,"STRING"); $ent -> insert('end’,"Hello");

Example

#!/usr/local/bin/perl
use Tk;

Main Window
my $mw = new MainWindow;

#GUI Building Area

my $ent $mw -> Entry() -> pack();

my $but $mw -> Button(-text => "Push Me",
-command =>\&push button);

$but -> pack();

MainLoop;
#This is executed when the button is pressed

sub push button {
$ent -> insert('end', "Hello");
}

Label

This widget display text messages

Some Options

-text => "TEXT" TEXT will be the text displayed on the button H
_font => FONT Specifies the font to use when drawing text inside the widget You can specify just the font or you

h can give it in this format "FONTNAME SIZE STYLE" The STYLE can be bold, normal etc
Example

#!/usr/local/bin/perl
use Tk;

my $mw = new MainWindow; # Main Window

my $lab = $mw -> Label(-text=>"Enter name:") -> pack();
my $ent = $mw -> Entry() -> pack();
my $but = $mw -> Button(-text => "Push Me",
-command =>\&push _button);
$but -> pack();

MainLoop;
#This is executed when the button is pressed

sub push button {
$ent -> insert(0,"Hello, ");
}

Widgets 2 : Frame, Text, Scrollbar, Scale

Frame

A frame is a simple widget Its primary purpose is to act as a spacer or container for complex window layouts The only
features of a frame are its background color and an optional 3-D border to make the frame appear raised or sunken
Frame can be created just like any other widget -

my $frm = $mw -> Frame();

To place other widgets in this frame, you should use the frame widget variable as its parent Normally the parent is
'$mw' or the MainWindow But if we wish to put a widget inside a frame, use the frame variable('$frm' in this case) in
place of '$mw' Like this

my $lab = $frm name -> Label(-text=>"Name:") -> pack();

Some Options

Specifies the 3-D effect desired for the widget Acceptable values are raised, sunken, flat, ridge,
solid, and groove The value indicates how the interior of the widget should appear relative to its
exterior; for example, raised means the interior of the widget should appear to protrude from the
screen, relative to the exterior of the widget

-relief=>STYLE

Example

#!/usr/local/bin/perl
use Tk;

my $mw = new MainWindow; # Main Window

my $frm_name = $mw -> Frame() -> pack(); #New Frame

my $lab = $frm name -> Label(-text=>"Name:") -> pack();

my $ent = $frm name -> Entry() -> pack();

my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button) -> pack();
MainLoop;

#This function will be executed when the button is pushed
sub push button {

$ent -> insert(0,"Hello, ");
}

Text

A text widget displays one or more lines of text and allows that text to be edited Similar to the entry widget but a larger
version of it

Some Options

This is to enable communication between a text widget and a scroll bar widget
There is a -yscrollcommand similler to this one

-xscrollcommand => COMMAND

-font => FONTNAME HSpecifies the font to use when drawing text inside the widget
-width => NUMBER ‘Specifies the width of the widget
-height => NUMBER HSpecifies the, you guessed it, height of the widget

‘Syntax ‘ ‘Description ‘ ‘Example

Return a range of characters from the text
The return value will be all the characters in
the text starting with the one whose index is
index] and ending just before the one whose
index is index2 (the character at index2 will
not be returned) If index2 is omitted then the
Swidget -> get(indexl, ?index2 ?); single character at index! is returned $contents = $txt -> get(10,'end’);
Note that the index of text is different from
that of the entry widget The index of text
widget is in the form
LINE_NOCHARECTER_NO This means
that 10 means the first character in the first
line

Inserts all of the chars arguments just before
the character at index If index refers to the
Swidget -> insert(index,DATA); end of the text (the character after the last $txt -> inset('end’,"Hello World");
newline) then the new text is inserted just
before the last newline instead

Example

#!/usr/local/bin/perl
use Tk;

my $mw = new MainWindow; # Main Window
my $frm name = $mw -> Frame() -> pack();

my $lab $frm name -> Label(-text=>"Name:") -> pack();
my $ent $frm name -> Entry() -> pack();

my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button) -> pack();
#Text Area
my $txt = $mw -> Text(-width=>40, -height=>10) -> pack();

MainLoop;

#This function will be executed when the button is pushed
sub push button {

my $name = $ent -> get();

$txt -> insert('end',"Hello, $name");

Scrollbar

A scroll bar 1s a widget that displays two arrows, one at each end of the scroll bar, and a slider in the middle portion of
the scroll bar It provides information about what is visible in an associated window that displays an document of some
sort (such as a file being edited or a drawing) The position and size of the slider indicate which portion of the
document is visible in the associated window For example, if the slider in a vertical scroll bar covers the top third of
the area between the two arrows, it means that the associated window displays the top third of its document It is made
to work with other widgets like text Some Options

-orient=>DIRECTION such as scroll bars, this option specifies which orientation should be used DIRECTION

For widgets that can lay themselves out with either a horizontal or vertical orientation,
must be either horizontal or vertical or an abbreviation of one of these

-command => COMMAND HThis command gets executed when the scroll bar is moved This option almost always has H

a value such as t xview or t yview, consisting of the name of a widget and either xview
(if the scroll bar is for horizontal scrolling) or yview (for vertical scrolling) All scrollable
widgets have xview and yview commands that take exactly the additional arguments
appended by the scroll bar

Example

#!/usr/local/bin/perl
use Tk;

my $mw = new MainWindow; # Main Window

my $frm _name = $mw -> Frame();

my $lab = $frm name -> Label(-text=>"Name:");
my $ent = $frm name -> Entry();
my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button);

my $textarea = $mw -> Frame(); #Creating Another Frame

my $txt = $textarea -> Text(-width=>40, -height=>10);

my $srl y = $textarea -> Scrollbar(-orient=>'v', -command=>[yview => $txt]);

my $srl x = $textarea -> Scrollbar(-orient=>'h', -command=>[xview => $txt]);

$txt -> configure(-yscrollcommand=>["'set', $srl y],
-xscrollcommand=>["'set"',$srl x]);

$lab -> grid(-row=>1,-column=>1);
$ent -> grid(-row=>1,-column=>2);
$frm name -> grid(-row=>1,-column=>1, -columnspan=>2);

$but -> grid(-row=>4,-column=>1, -columnspan=>2);

$txt -> grid(-row=>1,-column=>1);

$srl y -> grid(-row=>1,-column=>2, -sticky=>"ns");
$srl _x -> grid(-row=>2,-column=>1, -sticky=>"ew");
$textarea -> grid(-row=>5,-column=>1, -columnspan=>2);

MainLoop;

#This function will be executed when the button is pushed
sub push button {

my $name = $ent -> get();

$txt -> insert('end',"Hello, $name");

grid

As you can see I have used 'grid' here Grid is NOT a widget It is a geometry manager like pack but more advanced Lets
take a closer look at the commands -

$widget -> grid(-row=>1, -column=>1);

This line will tell the interpreter to put the widget called '$txt' in the first row of the first column of its parent widget
The below digram will help you understand

Column 1 Column 2

Row 1 '$txt' widget will be here

Row 2

Some Options

-sticky => STYLE

This option may be used to position (or stretch) the widget within its cell STYLE is a string that
contains zero or more of the characters n, s, e or w Each letter refers to a side (north, south,
east, or west) that the slave will "stick" to If both n and s (or e and w) are specified, the slave
will be stretched to fill the entire height (or width) of its cavity

-ipadx => AMOUNT

The AMOUNT specifies how much horizontal internal padding to leave on each side of the
slave(s) This is space is added inside the slave(s) border

-ipady => AMOUNT

The AMOUNT specifies how much vertical internal padding to leave on each side of the
slave(s) Options same as -ipadx

-padx => AMOUNT

The amount specifies how much horizontal external padding to leave on each side of the
slave(s), in screen units AMOUNT may be a list of two values to specify padding for left and
right separately

-pady => AMOUNT

The amount specifies how much vertical external padding to leave on the top and bottom of the
slave(s), in screen units Options same as -padx

-row => N

Insert the slave so that it occupies the Nth row in the grid Row numbers start with O If this
option is not supplied, then the slave is arranged on the same row as the previous slave
specified on this call to grid, or the first unoccupied row if this is the first slave

-column => N

Hlnsert the slave so that it occupies the N'th column in the grid Options same as -row

-rowspan => N

Hlnsert the slave so that it occupies N rows in the grid The default is one row

-columnspan => N

Hlnsert the slave so that it occupies N columns in the grid

Using grid requires a bit of experience - but if you know HTML it would help a lot The rows and columns are just like

those in HTML tables

Scale

- although the codes are very different

Makes a slider that can be adjusted by the user to input a variable

Some Options

-from => NUMBER

HStarting Number

-to => NUMBER

HEnding Number

-tickinterval = NUMBER

Determines the spacing between numerical tick marks displayed below or to the left of the
slider

-varable => NAME

Specifies the name of a global variable to link to the scale Whenever the value of the
variable changes, the scale will update to reflect this value Whenever the scale is
manipulated interactively, the variable will be modified to reflect the scale's new value

Syntax

‘ ‘Description ‘ ‘Example ‘ ‘

‘$widget -> get();

HGet the current value of the scale ‘ ‘my $age = $scl -> get();

‘$wia’get -> set(value);

Give the scale a new value H$scl -> set(20); H

Example

#!/usr/local/bin/perl

use Tk;

#Global Variables
my $age = 10;

Main Window
my $mw = new MainWindow;

#GUI Building Area
my $frm _name = $mw -> Frame();

my $lab = $frm name -> Label(-text=>"Name:");
my $ent = $frm name -> Entry();
#Age
my $scl = $mw -> Scale(-label=>"Age :",
-orient=>'v"', -digit=>1,
-from=>10, -to=>50,
-variable=>\$age, -tickinterval=>10);
my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button);
#Text Area

my $textarea = $mw -> Frame();

my $txt = $textarea -> Text(-width=>40, -height=>10);

my $srl y = $textarea -> Scrollbar(-orient=>'v', -command=>[yview => $txt]);

my $srl x = $textarea -> Scrollbar(-orient=>'h',-command=>[xview => $txt]);

$txt -> configure(-yscrollcommand=>['set', $srl yl],
-xscrollcommand=>["'set"',$srl x]);

#Geometry Management

$lab -> grid(-row=>1,-column=>1);

$ent -> grid(-row=>1,-column=>2);

$scl -> grid(-row=>2,-column=>1);

$frm name -> grid(-row=>1,-column=>1, -columnspan=>2);

$but -> grid(-row=>4,-column=>1, -columnspan=>2);

$txt -> grid(-row=>1,-column=>1);

$srl y -> grid(-row=>1,-column=>2, -sticky=>"ns");
$srl _x -> grid(-row=>2,-column=>1, -sticky=>"ew");
$textarea -> grid(-row=>5,-column=>1, -columnspan=>2);

MainLoop;

Functions
#This function will be exected when the button is pushed
sub push button {

my $name = $ent -> get();

$txt -> insert('end',"$name is $age years old");

}

Now our little example is becoming more and more like a program We have added the comments to it as it has grown

big and is difficult to understand Now we have added a slider with which age can be inputed

Dialogs

Dialogs can be called the elements in a program that detaches itself from the main window This is a VERY general
definition and has many problems But for the moment, it will do Tk provides many dialogs

messageBox

This procedure creates and displays a message window with an application-specified message, an icon and a set of
buttons Each of the buttons in the message window is identified by a unique symbolic name (see the -type options)
After the message window is popped up, messageBox waits for the user to select one of the buttons Push the below
button to see an example of messageBox

Some Options

Name gives the symbolic name of the default button for this message window ('ok’, 'cancel’,
and so on) See -type for a list of the symbolic names If this option is not specified, the first

-default=>name

‘ M:)utton in the dialog will be made the default ‘

Specifies an icon to display IconImage must be one of the following: error, info, question or
warning If this option is not specified, then the info icon will be displayed

-icon>iconlmage

-message>string HSpecifies the message to display in this message box ‘

-title>String HSpecifies a string to display as the title of the message box The default value is an empty string ‘

Arranges for a predefined set of buttons to be displayed The following values are possible for
predefinedType:

abortretryignore Displays three buttons whose symbolic names are abort, retry and ignore
ok Displays one button whose symbolic name is ok

-type>predefinedIype ok cancel Displays two buttons whose symbolic names are ok and cancel
retrycancel Displays two buttons whose symbolic names are retry and cancel

yesno Displays two buttons whose symbolic names are yes and no

yesnocancel Displays three buttons whose symbolic names are yes, no and cancel

Example

#!/usr/local/bin/perl
use Tk;
use strict;

Main Window
my $mw = new MainWindow;
my $button = $mw-<Button(-text=<"Show Quit Dailog", -command =< \&exitTheApp)-<pack();

sub exitTheApp {
my $response = $mw -< messageBox(-message=<"Really quit?",-type=<'yesno', -
icon=<'question');
if($response eq "Yes") {
exit
} else {
$mw -< messageBox(-type=<"ok", -message=<"I know you like this application!");
}

}

MainLoop;

chooseColor

chooseColor pops up a dialog box for the user to select a color

Some Options

-initialcolor>COLOUR HSpecifies the color to display in the color dialog when it pops up H

getOpenFile

The procedures getOpenFile and getSaveFile pop up a dialog box for the user to select a file to open or save The
getOpenFile command is usually associated with the Open command in the File menu Its purpose is for the user to
select an existing file only If the user enters an non-existent file, the dialog box gives the user an error prompt and
requires the user to give an alternative selection If an application allows the user to create new files, it should do so by

providing a separate New menu command

The getSaveFile command is usually associated with the Save as command in the File menu If the user enters a file that
already exists, the dialog box prompts the user for confirmation whether the existing file should be overwritten or not

Some Options

Specifies that the directories in directory should be displayed when the dialog pops
up If this parameter is not specified, then the directories in the current working
directory are displayed If the parameter specifies a relative path, the return value
will convert the relative path to an absolute path

-initialdir=>DIRNAME

Specifies a string that will be appended to the filename if the user enters a
-defaultextension=>EXTENSION filename without an extension The default value is the empty string, which means
no extension will be appended to the filename in any case

If a File types listbox exists in the file dialog on the particular platform, this option
gives the filetypes in this listbox When the user choose a filetype in the listbox,
only the files of that type are listed If this option is unspecified, or if it is set to the
empty list, or if the File types listbox is not supported by the particular platform
then all files are listed regardless of their types This is a little tricky - see manual
for information

-filetypes=>filePatternList

-initialfile=>FILENAME HSpecifies a filename to be displayed in the dialog when it pops up ‘

-multiple HAllows the user to choose multiple files from the Open dialog ‘

Toplevel

toplevel is a widget This can be used to create custom dialog boxes A toplevel is similar to a frame except that it is
created as a top-level window: its X parent is the root window of a screen rather than the logical parent from its path
name The primary purpose of a toplevel is to serve as a container for dialog boxes and other collections of widgets The
only visible features of a toplevel are its background color and an optional 3-D border to make the toplevel appear
raised or sunken

One can use toplevel to create new windows The widgets can be packed inside it in the same way widgets are packed
inside a frame An example

#!/usr/local/bin/perl
use Tk;

Main Window

$mw = new MainWindow;

my $lab = $mw -> Label(-text=>"This is the root window",
-font=>"ansi 12 bold") -> pack;

my $but = $mw -> Button(-text=>"Click to Create Toplevel",
- command=>\&makeTop) -> pack;

MainLoop;

#A function to make a toplevel window
sub makeTop {
my $top = $mw -> Toplevel(); #Make the window
#Put things in it
my $top lab = $top -> Label(-text=>"This is the Toplevel window",
-font=>"ansi 12 bold") -> pack;
my $txt = $top -> Text() -> pack;
$txt -> insert('end', "Widgets can be packed in this window");

#An option to close the window
my $but close = $top -> Button(-text=>"Close",
-command => sub { destroy $top; }) -> pack;

Widgets 3 : Radiobutton, Checkbutton

Radiobutton

Radiobutton is an input where any one of many choices MUST be chosen If one is chosen and another button is
clicked, the last chosen will lose its state and the clicked button will be chosen A graphic example(in HTML) is given
below

Choices®@ 1102103

Some Options

when mouse button 1 is released over the button window

command=>COMMAND Specifies a command to associate with the button This command is typically invoked

-variable => \$VARIABLE HSpecifies name of global variable to set to indicate whether or not this button is selected ‘

-value => VALUE HSpecifies value to store in the button's associated variable whenever this button is selected‘

‘Syntax ‘ ‘Description ‘ ‘Example ‘

Deselects the checkbutton and sets the associated variable to its "off"

$rdb_m -> deselect();
value

Swidget -> deselect();

‘$widget -> select() HSelects the checkbutton and sets the associated variable to its "on" value H$rdb_m -> select(); ‘

Example

#!/usr/local/bin/perl
use Tk;

#Global Variables
my $age = 10;
my $gender = "Male";

Main Window
my $mw = new MainWindow;

#GUI Building Area
my $frm _name = $mw -> Frame();

my $lab = $frm name -> Label(-text=>"Name:");

my $ent = $frm name -> Entry();

#Age

my $scl = $mw -> Scale(-label=>"Age :",
-orient=>'v"', -digit=>1,
-from=>10, -to=>50,
-variable=>\$age, -tickinterval=>10);

#Gender

my $frm gender = $mw -> Frame();

my $lbl gender = $frm gender -> Label(-text=>"Sex ");

my $rdb m = $frm gender -> Radiobutton(-text=>"Male",
-value=>"Male", -variable=>\$gender);

my $rdb f = $frm gender -> Radiobutton(-text=>"Female",
-value=>"Female", -variable=>\$gender);

my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button);

#Text Area
my $textarea = $mw -> Frame();

my $srl y $textarea -> Scrollbar(-orient=>'v',-command=>[yview => $txt]);

my $srl x $textarea -> Scrollbar(-orient=>'h"', -command=>[xview => $txt]);

$txt -> configure(-yscrollcommand=>["'set', $srl y],
-xscrollcommand=>["'set',$srl x]);

my $txt = $textarea -> Text(-width=>40, -height=>10);

#Geometry Management

$lab -> grid(-row=>1,-column=>1);

$ent -> grid(-row=>1,-column=>2);

$scl -> grid(-row=>2,-column=>1);

$frm_name -> grid(-row=>1,-column=>1, -columnspan=>2);

$1lbl gender -> grid(-row=>1,-column=>1);

$rdb m -> grid(-row=>1,-column=>2);

$rdb_f -> grid(-row=>1,-column=>3);

$frm_gender -> grid(-row=>3,-column=>1, -columnspan=>2);

$but -> grid(-row=>4,-column=>1, -columnspan=>2);

$txt -> grid(-row=>1,-column=>1);

$srl y -> grid(-row=>1,-column=>2, -sticky=>"ns");
$srl x -> grid(-row=>2,-column=>1, -sticky=>"ew");
$textarea -> grid(-row=>5,-column=>1, -columnspan=>2);

MainLoop;

Functions
#This function will be executed when the button is pushed
sub push button {
my $name = $ent -> get();
$txt -> insert('end',"$name\($gender\) is $age years old");

}

This time the program is subjected to even more change - the geometry manager is fully grid now There is no instances
of pack You will find this necessary when the layout becomes more complicated I hope you can stay with me in such

trying times

Checkbutton

Checkbotton is a input with two options - Off or On - it has to be either one The state can be changed by clicking on it

An example is shown below
check box

Some Options

-offvalue=>VALUE deselected Defaults to ~*0"

Specifies value to store in the button's associated variable whenever this button is

-onvalue=>VALUE Defaults to **1"

Specifies value to store in the button's associated variable whenever this button is selected

-command=>CALLBACK when mouse button 1 is released over the button window

Specifies a command to associate with the button This command is typically invoked

-variable=>\$ VARABLE HSpecifies name of global variable to set to indicate whether or not this button is selected ‘

‘Syntax ‘ ‘Description ‘ ‘Example ‘
.)) o eem $chk ->
Swidget -> deselect(); Deselects the checkbutton and sets the associated variable to its “off" value deselect():

‘$widget -> select(); HSelects the checkbutton and sets the associated variable to its ~“on" value

H$chk -> select();

Toggles the selection state of the button, redisplaying it and modifying its
associated variable to reflect the new state

Swidget -> toggle(); $chk -> toggle();

Example

#!/usr/local/bin/perl
use Tk;

#Global Variables
my $age = 10;

my $gender = "Male";
my $occupied = 1;

Main Window
my $mw = new MainWindow;

#GUI Building Area

my $frm_name = $mw -> Frame();

my $lab = $frm name -> Label(-text=>"Name:");
my $ent = $frm name -> Entry();

#Age

my $scl = $mw -> Scale(-label=>"Age :",
-orient=>'v"', -digit=>1,
-from=>10, -to=>50,
-variable=>\$age, -tickinterval=>10);

#Jobs

my $chk = $mw -> Checkbutton(-text=>"0ccupied",
-variable=>\$occupied);
$chk -> deselect();

#Gender

my $frm gender $mw -> Frame();

my $lbl gender $frm _gender -> Label(-text=>"Sex ");

my $rdb m = $frm gender -> Radiobutton(-text=>"Male",
-value=>"Male", -variable=>\$gender);

my $rdb f = $frm gender -> Radiobutton(-text=>"Female",
-value=>"Female", -variable=>\$gender);

my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button);

#Text Area

my $textarea = $mw -> Frame();

my $txt = $textarea -> Text(-width=>40, -height=>10);

my $srl y = $textarea -> Scrollbar(-orient=>'v',-command=>[yview => $txt]);

my $srl x = $textarea -> Scrollbar(-orient=>'h',-command=>[xview => $txt]);

$txt -> configure(-yscrollcommand=>['set', $srl y],
-xscrollcommand=>["'set"',$srl x]);

#Geometry Management

$lab -> grid(-row=>1,-column=>1);

$ent -> grid(-row=>1,-column=>2);

$frm name -> grid(-row=>1,-column=>1, -columnspan=>2);

$scl -> grid(-row=>2,-column=>1);
$chk -> grid(-row=>2,-column=>2,-sticky=>'w');

$1bl gender -> grid(-row=>1,-column=>1);

$rdb m -> grid(-row=>1,-column=>2);

$rdb f -> grid(-row=>1,-column=>3);

$frm_gender -> grid(-row=>3,-column=>1, -columnspan=>2);

$but -> grid(-row=>4,-column=>1, -columnspan=>2);

$txt -> grid(-row=>1,-column=>1);
$srl y -> grid(-row=>1,-column=>2, -sticky=>"ns");

$srl x -> grid(-row=>2,-column=>1, -sticky=>"ew");
$textarea -> grid(-row=>5,-column=>1, -columnspan=>2);

MainLoop;

Functions
#This function will be executed when the button is pushed
sub push button {
my $name = $ent -> get();
$txt -> insert('end',"$name\($gender\) is $age years old");

Widgets 4 : Listbox

Listbox

A listbox is a widget that displays a list of strings, one per line When first created, a new listbox has no elements
Elements may be added or deleted using widget commands described below

Some Options

Specifies one of several styles for manipulating the selection The MODE may be arbitrary,
-selectmode => MODE but the default bindings expect it to be either single, browse, multiple, or extended; the
default value is browse

Some Commands

Syntax Description Example

Returns a list containing the numerical indices of all of
the elements in the listbox that are currently selected If
there are no elements selected in the listbox then an
empty string is returned

Swidget -> curselection(); $sel = $lst -> curselection();

Deletes one or more elements of the listbox First and last
are indices specifying the first and last elements in the
range to delete If last isn't specified it defaults to first, ie
a single element is deleted

Swidget -> delete(first, ?last?); $1st -> delete(5);

If last is omitted, returns the contents of the listbox
element indicated by first, or an empty string if first
Swidget -> get(first, ?last?); refers to a non-existent element If last is specified, the $lst -> get(5,end);
command returns a list whose elements are all of the
listbox elements between first and last, inclusive

Returns the integer index value that corresponds to index
If index is end the return value is a count of the number
of elements in the listbox (not the index of the last
element)

Swidget -> index(index); $1st -> index(5);

Inserts zero or more new elements in the list just before
Swidget -> insert(index, ? the element given by index If index is specified as end
element element ?); then the new elements are added to the end of the list
Returns an empty string

$1st -> insert('end’,"me");

Returns a decimal string indicating the total number of

.) count = $lst -> size();
elements in the listbox $ $;

Swidget -> size();

Example

#!/usr/local/bin/perl
use Tk;

#Global Variables
my $age = 10;

my $occupied = 1;

my $gender = "Male";

Main Window
my $mw = new MainWindow;

#GUI Building Area
my $frm _name = $mw -> Frame();

my $lab = $frm name -> Label(-text=>"Name:");

my $ent = $frm name -> Entry();

#Age

my $scl = $mw -> Scale(-label=>"Age :",
-orient=>'v', -digit=>1,
-from=>10, -to=>50,
-variable=>\$age, -tickinterval=>10);

#Jobs

my $frm job = $mw -> Frame();

my $chk = $frm job -> Checkbutton(-text=>"0ccupied”,
-variable=>\$occupied);

$chk -> deselect();

my $lst = $frm job -> Listbox(-selectmode=>'single');

#Adding jobs

$lst -> insert('end', "Student","Teacher","Clerk", "Business Man",

"Militry Personal","Computer Expert","Others");

#Gender

my $frm_gender $mw -> Frame();

my $lbl gender $frm _gender -> Label(-text=>"Sex ");

my $rdb m = $frm gender -> Radiobutton(-text=>"Male",
-value=>"Male", -variable=>\$gender);

my $rdb f = $frm gender -> Radiobutton(-text=>"Female",
-value=>"Female", -variable=>\$gender);

my $but = $mw -> Button(-text=>"Push Me", -command =>\&push button);

#Text Area
my $textarea = $mw -> Frame();
my $txt = $textarea -> Text(-width=>40, -height=>10);

my $srl y = $textarea -> Scrollbar(-orient=>'v', -command=>[yview
my $srl x = $textarea -> Scrollbar(-orient=>'h"', -command=>[xview

$txt -> configure(-yscrollcommand=>['set', $srl y],
-xscrollcommand=>["'set',$srl x1);

#Geometry Management

$lab -> grid(-row=>1,-column=>1);

$ent -> grid(-row=>1,-column=>2);

$scl -> grid(-row=>2,-column=>1);

$frm _name -> grid(-row=>1,-column=>1, -columnspan=>2);

$chk -> grid(-row=>1,-column=>1, -sticky=>'w');
$lst -> grid(-row=>2,-column=>1);
$frm_job -> grid(-row=>2,-column=>2);

$1lbl gender -> grid(-row=>1,-column=>1);

$rdb m -> grid(-row=>1,-column=>2);

$rdb_f -> grid(-row=>1,-column=>3);

$frm_gender -> grid(-row=>3,-column=>1, -columnspan=>2);

$but -> grid(-row=>4,-column=>1, -columnspan=>2);

$txt -> grid(-row=>1,-column=>1);
$srl y -> grid(-row=>1,-column=>2,-sticky=>"ns");

=> $txt]);
=> $txt]);

$srl x -> grid(-row=>2,-column=>1, -sticky=>"ew");
$textarea -> grid(-row=>5,-column=>1, -columnspan=>2);

MainLoop;

Functions
#This function will be executed when the button is pushed
sub push button {
my $name = $ent -> get();
$txt -> insert('end', "$name\($gender\) is $age years old and is ");

my $J'0b = n II;
#See whether he is employed
if ($occupied == 1) {

my $job id = $1lst -> curselection(); #Get the no of selected jobs
if ($job id eq "") { #If there is no job

$job = "a Non worker";
}
else {
$job = $lst -> get($job id) ;#Get the name of the job
$txt -> insert('end',"a $job");
}
}
else {
$txt -> insert('end', "unemployed");
}

Wow! Our 'little' example is a big (and utterly pointless) program now I am going to stop 'exampling' from now on
This is quite complicated isn't it? Why don't you run the script and see what a beautiful script we made Copy the above
script and paste it in a file called "infopl" and double click the file Voila! We are Perl/Tk programmers

Widgets 5 : Menubutton, Menu, Optionmenu

Menubutton

A menubutton is a widget that displays a textual string, bitmap, or image and is associated with a menu widgetln
normal usage, pressing left-clicking the menubutton causes the associated menu to be posted just underneath the
menubutton

Some Options

Specifies where the menu is going to be popup up above tries to pop the menu above the
menubutton below tries to pop the menu below the menubutton left tries to pop the menu
to the left of the menubutton right tries to pop the menu to the right of the menu button
flush pops the menu directly over the menubutton

-direction => DIRECTION

Specifies the path name of the menu associated with this menubutton The menu must be

-menu => NAME a child of the menubutton

Menu

A menu is a widget that displays a collection of one-line entries arranged in one or more columns There exist several
different types of entries, each with different properties Entries of different types may be combined in a single menu
Menu entries are not the same as entry widgets In fact, menu entries are not even distinct widgets; the entire menu is
one widget

Some Options

-tearoff => BOOLEAN

This option must have a proper boolean value, which specifies whether or not the menu
should include a tear-off entry at the top If so, it will exist as entry 0 of the menu and the
other entries will number starting at 1 The default menu bindings arrange for the menu to be
torn off when the tear-off entry is invoked

The string will be used to title the window created when this menu is torn off If the title is
-title => STRING NULL, then the window will have the title of the menubutton or the text of the cascade item
from which this menu was invoked

This option can be one of menubar, tearoff, or normal, and is set when the menu is created
-type => OPTION While the string returned by the configuration database will change if this option is changed,
this does not affect the menu widget's behavior

Some Commands

Syntax

Description

Swidget -> TYPE(?option=>
value,option=>value, ?);

Add a new entry to the bottom of the menu The new entry's type is given by TYPE
and must be one of cascade, checkbutton, command, radiobutton, or separator,
or a unique abbreviation of one of the above If additional arguments are present, they
specify any of the following options:
Specifies a string to display at the right side of the menu
entry Normally describes an accelerator keystroke
-accelerator => VALUE sequence that may be typed to invoke the same function
as the menu entry This option is not available for
separator or tear-off entries

When this option is zero, the appears below the previous
-columnbreak => VALUE entry When this option is one, the menu appears at the
top of a new column in the menu

Specifies a string to display as an identifying label in the

label => VALUE menu entry Not available for separator or tear-off entries

Specifies whether the menu entry should display both an
image and text, and if so, where the image should be
placed relative to the text Valid values for this option are
bottom, center, left, none, right and top

-compound => VALUE

Specifies an image to display in the menu instead of a
text string or bitmap The image must have been created
by some previous invocation of image create This option

-image => VALUE overrides the -label and -bitmap options but may be reset
to an empty string to enable a textual or bitmap label to
be displayed This option is not available for separator or
tear-off entries

Specifies the integer index of a character to underline in
the entry This option is used to make keyboard shortcuts
0 corresponds to the first character of the text displayed

in the entry, 1 to the next character, and so on

-underline => VALUE

Swidget -> delete(indexl,
2index2?);

Delete all of the menu entries between index1 and index2 inclusive If index2 is
omitted then it defaults to index1 Attempts to delete a tear-off menu entry are
ignored (instead, you should change the tearOff option to remove the tear-off entry)

S$widget -> insert(index,type, ?
option=>value ?);

Same as the add widget command except that it inserts the new entry just before the
entry given by index, instead of appending to the end of the menu The type, option,
and value arguments have the same interpretation as for the add widget command It
is not possible to insert new menu entries before the tear-off entry, if the menu has

one

Example

#!/usr/local/bin/perl
use Tk;

Main Window

my $mw = new MainWindow;

#Making a text area
my $txt = $mw -> Scrolled('Text',-width => 50, -scrollbars=>'e') -> pack ();

#Declare that there is a menu
my $mbar = $mw -> Menu();
$mw -> configure(-menu => $mbar);

#The Main Buttons

my $file = $mbar -> cascade(-label=>"File", -underline=>0, -tearoff => 0);

my $others = $mbar -> cascade(-label =>"0thers", -underline=>0, -tearoff => 0);
my $help = $mbar -> cascade(-label =>"Help", -underline=>0, -tearoff => 0);

File Menu
$file -> command(-label => "New", -underline=>0,
-command=>sub { $txt -> delete('10','end');});
$file -> checkbutton(-label =>"Open", -underline => 0,
-command => [\&menuClicked, "Open"]);
$file -> command(-label =>"Save", -underline => 0,
-command => [\&menuClicked, "Save"]);
$file -> separator();
$file -> command(-label =>"Exit", -underline => 1,
-command => sub { exit });

Others Menu
my $insert = $others -> cascade(-label =>"Insert", -underline => 0, -tearoff => 0);
$insert -> command(-label =>"Name",

-command => sub { $txt->insert('end',"Name : Binny V A\n");});
$insert -> command(-label =>"Website", -command=>sub {

$txt->insert('end', "Website : http://wwwgeocitiescom/binnyva/\n");});
$insert -> command(-label =>"Email",

-command=> sub {$txt->insert('end',"E-Mail : binnyva\@hotmailcom\n");});
$others -> command(-label =>"Insert All", -underline => 7,

-command => sub { $txt->insert('end',"Name : Binny V A
Website : http://wwwgeocitiescom/binnyva/
E-Mail : binnyva\@hotmailcom");

1)
Help
$help -> command(-label =>"About", -command => sub {

$txt->delete('10','end');
$txt->insert('end’,
"About
This script was created to make a menu for a\nPerl/Tk tutorial
Made by Binny V A
Website : http://wwwgeocitiescom/binnyva/code
E-Mail : binnyva\@hotmailcom"); });

MainLoop;

sub menuClicked {

my ($opt) =@ ;

$mw->messageBox(-message=>"You have clicked $opt
This function is not implanted yet");

}

Create the main buttons as cascade menus and create the menus as their slaves For more information see the manual

Optionmenu

Makes a button, which when clicked on shows a list with available options Useful when user has to make one choice
when multiple choices are given Below is a options menu in HTML A word of caution though - Perl/Tk's option menu
has a very different appearance

Go

Syntax
my $widget = $mw -> Optionmenu(?option=>value,option=>value,?);

Options
‘Syntax ‘ ‘Description

-command=>CALLBACK HDefines the callback that is invokes when a new option is selected

|
-options=>OPTIONS H(Re)sets the list of options presented ‘
|
|

-variable=>\$ VARIABLE HReference to a scalar that contains the current value of the selected option

Methords

‘Syntax ‘ ‘Description ‘ ‘Example

Swidget ->
addOptions(/Optionl=>Valuel], ?
[Option2=>Value2]?);

Adds newly given options to the | $opt->addOptions([May=>5],
already available options [June=>6], [July=>7], [Augest=>8]);

Example

#!/usr/local/bin/perl
use Tk;

Main Window

$mw = new MainWindow;

my $var;
my $opt = $mw -> Optionmenu(-options => [gw(January February March April)],
-command => sub { print "got: ", shift, "\n" },
-variable => \$var,
) ->pack;
$opt->addOptions([May=>5], [June=>6], [July=>7], [Augest=>8]);

$mw->Label(-textvariable=>\$var, -relief=>'groove')->pack;
$mw->Button(-text=>'Exit', -command=>sub{$mw->destroy})->pack;

MainLoop;

Some more Widgets - Canvas, Message, Adjuster,
Scrolled

Canvas

The canvas widget is a very important widget as all points are addressable graphical drawing area Canvas widgets
implement structured graphics A canvas displays any number of items, which may be things like rectangles, circles,
lines, and text Items may be manipulated (eg moved or re-colored) and commands may be associated with items So if
you don't like the paint program in windows, you can make your own program using this widget

The command $widget -> create type options is used to make different structures A few examples are given
below For more information read the manual

Example

#!/usr/local/bin/perl
use Tk;

Main Window

my $mw = new MainWindow;

my $cns = $mw -> Canvas(-relief=>"sunken", -background=>"blue");
$cns -> create('polygon',5,100,50,5,150,5,200,100,5,100,
-joinstyle=>"bevel", -fill=>"red", -outline=>"white", -width=>5);

$cns -> create('oval',200,100,300,200, -fill=>"green");

$cns -> create('oval',b100,150,300,100, -fill=>"white", -width=>0);
$cns -> create('rectangle',10,150,100,250, -dash=>[6,4,2,4,2,41);
$cns -> pack;

MainLoop;

Message

A message is a widget that displays a textual string Much like the label widget but this can be used to make a multi-line
text

The -justify option specifies how to justify lines of text Must be one of left, center, or right Defaults to left This option
works together with the anchor, aspect, padX, padY, and width options to provide a variety of arrangements of the text
within the window

Adjuster

An adjuster acts like the frame widget - with one notable exception The borders can be dragged and expended This
widget contains any number of panes, arranged horizontally or vertically, according to the value of the -orient option
Each pane contains one widget, and each pair of panes is separated by a movable sash Moving a sash can be done by
dragging it This causes the widgets on either side of the sash to be resized

Some Options

Specifies the side on which the managed widget lies relative to the Adjuster In conjunction with
-side=>DIRECTION | the pack geometry manager, this relates to the side of the master against which the managed
widget and the Adjuster are packed Must be left, right, top, or bottom Defaults to top

Some Methods

This command configures the Adjuster's -widget and -side options
respectively to '$widget' and the -side value specified in
pack_options (top if not specified) It then packs the Adjuster after
'$widget', with -fill set to x or y as appropriate

$adjuster -> packAfter($widget, ?pack_options?)

Example

use Tk;
use Tk::Adjuster;
my $mw = new MainWindow;

my $adj

$mw -> Adjuster();
my $lst H

$mw -> Listbox()

PLEAB AR SRR TS, AW RSB —FEHNE.
BERREE4A, BiH: https://d. book118. com/47810602507
5006063

https://d.book118.com/478106025075006063
https://d.book118.com/478106025075006063

	no: 1
	select1: [Select from menu]
	unnamed0:

