
Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 2

Introduction
Interconnect capacitance becomes larger when the thickness/minimum width
of metal line becomes larger and spacing becomes smaller as CMOS
process scales into 0.18um and below. Glitch and induced delay related to
interconnect capacitance are more obvious than the previous process
technology. In other words, noise coupled from the adjacent nets may result
in functional failure more easily. Glitch will generate ripple of the output state
when it's small, and will cause the output state change when it exceeds the
cell noise threshold. The signal timing on the victim net may be speed up or
slow down by the crosstalk coupling noise, and the timing violations may be
generated. These impacts of crosstalk noise should not be ignored, and they
can be prevented and reduced. However, the previous implementation flow
is not enough to solve the crosstalk noise impacts. In this guide, we will
show the model of crosstalk noise, how to prevent it, how to analyze it, and
how to fix it in an efficient way.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 3

rt t

VL

Vd

dd

victim

R
R
V
v

Noise model
Crosstalk noise is induced by the interconnect capacitanc ween metal
lines [Rose 99]. Fig.1 shows a simplified analysis of concise attributes of
crosstalk noise.

Figure 1. Crosstalk noise (a) coupling onto an evaluation node, (b) simplified
equivalent circuit, and (c) pulse coupling noise waveform.

The victim net is attacked by an ideal aggressor with the transition time, rt .
The noise value can be approximated as the following equation:

for

for

Where:
: Victim noise value
: Supply voltage
: Effective resistance of the victim driver
: Effective resistance of the victim net

r
VL xVd

r

dd
victim

tR R C
t
Vv 1 exp

rt t0

r

r

r

r
VL xVd

r

dd
victim

t ttR R C
t
Vv exp1 exp

C

C

x

VL

Aggressor

R

R

VL

Vd

C

C

VL

x

victim

time

CAL

R AL R Ad

V
(b)(a)

(c)

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 4

r

x

AL

VL

AL

Ad

C
C
C
R
R : Effective resistance of the aggressor driver

: Effective resistance of the aggressor net
: Lumped ground capacitance of the victim net
: Lumped ground capacitance of the aggressor net
: Lumped coupling capacitance of the victim net
: VL VL xVdAL AL xAdR R C C R R C C

The peak value of crosstalk noise is proportional to the lumped coupling
capacitance of the victim net, the effective driver resistance of the victim net,
and the effective resistance of the victim net. The time constant, r , is
proportional to the induced delay, but the peak value of crosstalk noise may
be larger when it is smaller. In other words, if the coupling capacitance is
large, the glitch on the victim net is large; if the effective driver resistance is
small, the peak noise value on the victim net is small. In the commercial
routing tools, the basic concepts of the prevention and fixing of crosstalk
noise are reducing the coupling capacitance and selecting the cell with
reasonable driving strength. Eventually, these routing tools may reduce the
impacts of crosstalk noise well. However, they may take long time to achieve
the timing closure. Reducing the coupling capacitance and selecting the
reasonable cell are the fundamental ways to solve the crosstalk issues, and
are not the bottlenecks of the implementation flow. Based on the same
strategies, the next sections will show the efficient methodology to apply
these tools and achieve timing closure.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 5

Noise Prevention
It will be too late to fix crosstalk noise in the post-routing stage. Such
incremental changes may generate new violations of timing and congestion
issues, and make the runtime of post-routing tool too long or unpredictable.
Prevention in the front stages can reduce most potential crosstalk noise
effectively.

Synthesis stage
The driving strength of a cell is an important factor of crosstalk noise
prevention. According to the crosstalk noise modeling equation, the metal
line driven by a weak cell may be attacked seriously when the adjacent nets
switching, while the glitch of the net driven by a stronger cell is smaller when
the adjacent net switching. On the other hand, the metal line driven by a too
strong cell or with sharp transition curve may be a stronger attacker to the
adjacent nets. Choosing the right cell with reasonable driving strength in the
synthesis stage is the first step to accelerate the implementation flow. If the
weak cell is used in the front stage, the routing tool will take ti ptimize
the timing path according to the crosstalk noise report and search/repair
again. Set “don’t used cell” and max transition time are used to select the
suitable cells in the synthesis tool. Avoid using cells with weak driving
strength can make sure most nets have a strong driver. However, it may
increase signal delay, leakage power, and more attackers with sharp
transition curves. Set constraint on max transition time is a better way to
handle the driving strength of nets with different loading. In the design using
0.13um process technology, max transition time from 0.6ns to 1.2ns is
suggested to set in the synthesis and optimization stage.

Post-placement stage
Because of the limitation of wire-load model, the synthesis tool may not
choose the correct cell for the design. To prevent the potential crosstalk
issues, the cell should be re-optimize with the physical location after
placement. In First Encounter, “slew balance” and “congestion removal” are
used to optimize the transition time; In Astro, use “Post-Placement
optimization” to fix the max transition time; In Physical Compiler, set the max
transition time constraint and fix them via “physopt”. The RC calculation of

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 6

each placement tool may be different from the real RC extraction tool, such
as Star-RCXT. To get a robust result, the RC scaling factor in the placement
tool, calculated after correlating with the real RC extraction tool, should be
set a little conservative.

Routing stage
Crosstalk noise prevention option must be turned on in the global route,
track assign, and detail route stages. It can reduce the overall runtime of
fixing crosstalk noise obviously. Fixing crosstalk noise in search/repair stage
only will take much longer runtime and the interconnect noise may not be
reduced effectively. When the crosstalk noise prevention is turned on,
routing tool can avoid assigning the long nets in the adjacent tracks
according to the timing constraint. The earlier the crosstalk noise prevention
option is turned on, the easier the routing tools achieve timing closure. If
such option is turned on until in the post-route stage, routing tool will find the
best routing patterns to meet the timing constraint without considering
interconnect noise before the post-routing stage. In the post-routing stage,
the routing tool may destroy the current routing patterns and perfect timing to
reduce the interconnect noise, and then optimize the timing again.
Eventually the routing tool may achieve the same timing violations, but the
runtime may be much longer. The option of avoidin o nets routing in the
parallel tracks more than a specified length is good to prevent crosstalk
noise impacts in the false path set in timing constraint.

Post-routing stage
Crosstalk noise prevention option should be turned on when fixing the timing
violation in the post-routing stage. The incremental changes after buffer
sizing or buffer insertion may modify the routing patterns and timing of the
design. Turn on the crosstalk noise prevention option will let the routing tool
find the best routing path and reduce the interconnect noise at the same time.
Turn on the crosstalk noise prevention option after the incremental changes
and search/repair again may achieve the same timing closure eventually.
However, the routing tool needs more runtime to fix the modified timing in
the search/repair stage.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 7

Noise Analysis
Dynamic simulation is not practical to check an entire digital IC (with millions
of cell instances) for crosstalk effects. CeltIC employs a static noise analysis
technique. Each cell instance in the design is analyzed from primary inputs
to primary outputs, and a SPICE-like transistor-level simulator is used for
noise induced delay analysis if necessary. The analysis of induced delay
from crosstalk noise performed by CeltIC depends on the arrival times and
slews rates of signals calculated by PrimeTime. Delay induced by crosstalk
can only occur when the timing window for the victim and aggressor nets
overlap. Re-characterized cell library for noise, logic constraints
(relationships between signals) and timing constraints (timing windows
during which signals can switch) are necessary for noise analysis in CeltIC.
After calculation with the library, constraint and timing window, glitch report
and delta SDF are generated to show the impact of crosstalk noise, and the
ECO repair file is generated to fix these impacts.

Single operation condition of PrimeTime is used in our crosstalk analysis flow,
best corner for hold time check and worst corner for setup time check.

Noise library characterization
Before CeltIC can perform a comprehensive crosstalk analysis of a
cell-based digital circuit, each cell in a cell library must be characterized by
the makecdB utility or modeled using a UDN or ECHO to model the noise
characteristics of the cell. The makecdB utility analyzes the transistor-level
netlist of a cell for noise effects as seen from its input and output ports. It
encapsulates the essential information inside a cell for noise analysis.
Resistances, capacitances, and noise tolerance characteristics for each cell
are taken into account. The characterized noise library typically has a .cdB
extension, but this is not required.

The resultant cell library (.cdB file) generated by the makecdB utility contains
a cell-level view and a transistor-level view. The cell-level view, or
user-defined noise model (UDN), contains pin capacitance, calibrated input
noise threshold, and nonlinear output drive strength. The transistor-level

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 8

view contains the transistor cell subcircuit. The information in the .cdB file
should be dumped in text format to make sure the setting and the further
analysis is correct.

Extracted RC in SPEF file
The SPEF file extracted by Star-RCXT with tsmc in-die process variation
technology file is used in the analysis of crosstalk noise. To fix the crosstalk
noise correctly, the resolution of extracting RC parameters should be set
more accurate after large glitches or delay being reduced and check the
report again with the more precise SPEF file.

Timing window from PrimeTime
The delay uncertainty analysis performed by CeltIC is dependent on the
arrival times and slew rates of signals get from PrimeTime. CeltIC uses the
timing windows, arrival times, from PrimeTime to filter the unnecessary
simultaneous switching between victim and aggressor nets, and report the
crosstalk noise impacts according to the real signal switching scenarios.

Timing group
Each timing window entry in the timing file refers to a reference clock. CeltIC
uses timing windows to determine if signals can switch together to create a
combined worst-case noise glitch. If signals have non-overlapping windows
and belong to the same timing group, they are not combined. A timing group
is defined by the set_timing_group command and is used to indicate clocks
that are synchronous or asynchronous to each other. All clocks within a
group are synchronous to each other and asynchronous to all other clocks
outside the group. By default, all clocks belong to a single, synchronous
group.

Ex: clk_125 is generated from clk_250, and it should be synchronous to
clk_250.
clk_125 and clk_250 should be showed in the timing window file.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 9

 set_timing_group {clk_250 clk_125}

Noise Calculation
There are two noise analysis modes in CeltIC, sensitivity mode and
propagation mode. In sensitivity mode, if the noise peak calculated by the
noise glitch calculation method is greater than a receiver's input noise
threshold in analysis_noise stage then CeltIC will calculate the noise
sensitivity of the receiver. Noise sensitivity is the basic rule that sensitivity
mode deploys to determine if noise at the receiver is likely to cause a
functional problem. It is based on the fact that if every logic gate in the circuit
always filters noise then it is impossible for noise to create a functional
failure. Noise waveform computation in CeltIC is performed with circuit
simulation techniques considering fully distributed parasitic network for
aggressors and victim. After noise waveform is computed, it is possible to
simply check the noise peak voltage against a user defined global threshold
in analysis_noise step and have all the victims with glitche ceeding this
threshold reported as noise failures.

Noise Propagation
CeltIC performs transient simulations to propagate noise through multiple
logic stages. Functional violations are reported when a gate output the glitch
larger than a specified threshold or when the noise pulse propagates to
flip-flops or latches. CeltIC considers the worst case combinable noise from
multiple gate inputs, as well as the nonlinear combination of propagated
noise with additional coupling in the downstream logic.

The accumulated noise waveform is then tested at the inputs of downstream
flip-flops as shown in Figure 2.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 10

Figure 2. Noise Propagation
When a noise failure is reported at a latch (or flip-flop), CeltIC will report the
combined noise due to both propagated and coupling noise. It will also
identify the contribution from each noise source. The contribution of
propagated noise is shown in CeltIC's output reports with the prp noise type.

Sensitivity mode
To calculate the noise sensitivity of the receiver, CeltIC performs a transistor
level AC sensitivity simulation of the receiver with the glitch noise calculated
in the previous step. The worst case amplification of the receiver (dvout/dvin)
is recorded as the sensitivity measure.

Sensitivity greater than 1 means that a gate is amplifying noise and 1 is the
default value to evaluate the noise failure. Cell with sensitivity greater than 1
is reported as a noise failure with the default setting. This failure level can be
changed to be more optimistic or pessimistic by setting the set_parm
stability_thresh parameter in sensitivity mode.

Here is an example log of sensitivity mode with stability_thresh 1 :

analyze_noise: SUMMARY
analyze_noise: Number of cells in design = 364861
analyze_noise: Number of nets analyzed = 459736

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 11

analyze_noise: Number of stability failures = 3
analyze_noise: Number of problem noisenets = 3
analyze_noise: Number of ECO changes = 3
analyze_noise: Number of delay ECO changes = 20

analyze_noise: Analysis finished at Tue Apr 01 23:27:53 CST 2003

Sensitivity Histogram: (magnitude)
 NC: 0
 [0.0, 0.1) 10480
 [0.1, 0.2) 95
 [0.2, 0.3) 48
 [0.3, 0.4) 24
 [0.4, 0.5) 7
 [0.5, 0.6) 4
 [0.6, 0.7) 3
 [0.7, 0.8) 4
 [0.8, 0.9) 1
 [0.9, 1.0) 0

[1.0, 1.5] 3

Peak Histogram: (percentage of vddnom @ 1100.0 mV)
 [0.0, 10.0) 0
 [10.0, 20.0) 0
 [20.0, 30.0) 9269
 [30.0, 40.0) 1320
 [40.0, 50.0] 80

Propagation mode
Alternatively, CeltIC can be used in the propagation mode, where failures
are only reported at flip-flops or latches and that noise from all other cells is
propagated. Propagated noise is calculated using the same transistor level
simulation that is used to calculate noise sensitivity. Propagated noise will be
later combined with coupling noise when analyzing the output of a victim's

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 12

receivers. The sensitivity threshold in propagation mode means the receiver
peak noise (noise/VDD) in the output of each cell. Threshold greater than 0.2
means the receiver peak noise is larger than 20% VDD, and 0.2 is the
default value to evaluate the noise failure. In the path to flip-flop or latch,
failures are reported as stability failures; in the path to output port, failures
are reported including problem noise nets. The problem noise nets contain
the failures in the path to flip-flop or latch and the path to output port.
Received peak noise greater than 20% VDD is reported as a noise failure in
the default mode. This failure level can be changed to be more optimistic or
pessimistic by setting the set_parm stability_thresh parameter in propagation
mode.

The default mode in CeltIC 4.1 is propagation mode.

Here is an example log of propagation mode with stability_thresh 0.2 :

analyze_noise: SUMMARY
analyze_noise: Number of cells in design = 384289
analyze_noise: Number of nets analyzed = 417066
analyze_noise: Number of stability failures = 11
analyze_noise: Number of problem noisenets = 123
analyze_noise: Number of ECO changes = 123
analyze_noise: Number of delay ECO changes = 0

analyze_noise: Analysis finished at Wed Apr 09 05:03:33 CST 2003

Receiver Peak Histogram: (percentage of vddnom @ 900.0 mV)
 [0.0, 10.0) 34339
 [10.0, 20.0) 16
 [20.0, 30.0) 4
 [30.0, 40.0) 3
 [40.0, 50.0) 0
 [50.0, 60.0) 0
 [60.0, 70.0) 0
 [70.0, 80.0) 0
 [80.0, 90.0) 1

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 13

 [90.0, 100.0) 3
 [100.0, 110.0) 1

Peak Histogram: (percentage of vddnom @ 900.0 mV)
 [0.0, 10.0) 0
 [10.0, 20.0) 0
 [20.0, 30.0) 23909
 [30.0, 40.0) 8367
 [40.0, 50.0) 1878
 [50.0, 60.0) 199
 [60.0, 70.0) 11
 [70.0, 80.0) 2
 [80.0, 90.0) 0
 [90.0, 100.0] 1

Noise Failure Determination
When a noise pulse propagates to the input of a latch or flip-flop, CeltIC
needs to determine if the noise pulse will cause a catastrophic functional
problem. CeltIC provides the user three possible choices, receiver input
noise waveform, receiver output noise amplitude, or receiver sensitivity.
Normally the noise at the receiver output is much smaller than the noise at
the input, but if the input noise is big enough the output noise may be
amplified to become even bigger. CeltIC performs an accurate transient
simulation with the actual noise waveform on the receiver input and the
proper loading on the receiver output. Noise sensitivity is a measure of the
amplification of the noise by the receiver and is computed by monitoring the
potential rate of change in the receiver output voltage to minor changes in
the input noise waveform (dvout/dvin). As shown in Figure 3, CMOS logic
gates such as the inverter are inherently noise immune. As long as a
receiver is biased by noise into the sub-unity-gain regions of its transfer
characteristic, noise will be attenuated and the gate will act to restore the
correct logic level. If, however, noise biases the receiver into the high-gain
region, then noise will be amplified and a functional failure could result.

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 14

Figure 3. CMOS Inverter Noise Characteristics

To check sensitivity, a transistor level transient simulation of the receiver
with the worst-case glitch waveform is performed. Sensitivity greater than
unity gain (1.0) means that a receiver is amplifying noise and hence is
deemed a noise failure under the noise sensitivity metric.

Noise threshold
CeltIC analyzes all nets for noise starting from the input ports and working
towards the output ports. Option "-noise_thresh" of command
"analyze_noise" set the threshold of noise peak value. The noise larger than
the specified threshold is used to calculated delta delay, and the other is
suppressed. Default value of noise threshold is 20% of VDD. The number of
analyzed nets will be increased when the noise threshold is reduced. The
delta delay and glitch of major victim nets are almost the same. One small
glitch will not hurt timing obviously. However, a lot of small attackers should
be calculated.

Virtual Attacker
A virtual attacker is an imaginary net introduced by CeltIC that is intended to
represent the coupling effect of many small attackers on a victim net. Every
victim net can potentially have a virtual attacker. The virtual attacker is
named after the victim net. For example, for victim net XXX, the name of the
virtual attacker is ~XXX. The use of a virtual attacker is a trade-off. If CeltIC
treated every attacker explicitly and individually, the amount of computing
and memory resources could be astronomical, because almost every net

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 15

has many coupling capacitances connected to it, most of them very small. It
is a mistake to completely ignore such small capacitances because when
combined, they can cause trouble.

The most attackers for any victim net are usually very small and easily fall
under the 5% threshold. These nets contributing 5% of VDD are called small
attackers. Small attackers are too costly to be recorded and treated
individually, so CeltIC creates a virtual attacker to represent the combined
effects of these small attackers. Small attackers are combined to create a
virtual attacker, and the combined virtual attacker has a coupling
capacitance to the victim net as

The significance of this value is that given the n small attackers, each acting
tly, if n is large, there is less than 4% probability that the

attackers will attack with a combined effect larger than C.
To use the summation method, set the set_parm vmode control variable to 0
(the default). User can modify the combined capacitance by setting the
set_parm vfactor control variable. For example, if user want to use 1.5 αto
get less pessimism, set_parm vfactor to 0.5. (0.5 is 1/2, which, when
multiplied with the 3 x αvalue, equals 1.5 x α).
The default mode ignores timing windows while assembling the virtual
attacker and uses a default slew when driving the virtual attacker.
To compute a weighted average of the slews of the small coupling
capacitance aggressor nets and use the computed slew to drive the virtual
attacker, set the set_parm do_vatt_slew control variable to 1.

The virtual attacker is an engineering compromise that provides a time and
memory savings, but sacrifices accuracy, reporting detail, and control on
slew and timing window information. Because the virtual attacker is used
only for small attackers, these sacrifices should be acceptable.

Methodology
Receiver output noise larger than the stability threshold is reported in

22
2

2
13 nCCCC

Crosstalk Prevention/Analysis/Fixing Guide / Release 4.0

c Copyright 2003 Semiconductor Manufacturing Company Ltd. 16

propagation mode, and dVout/dVin of each cell larger than the stability
threshold is reported in sensitivity mode. User can understand receiver
output noise more easily than dVout/dVin, and receiver output noise can be
evaluated directly. Since the delta delay, glitch numbers and run time are
almost the same in our test case with the setting mentioned in this
application note, propagation mode is recommended in the noise analysis.

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/48710313314

4006142

https://d.book118.com/487103133144006142
https://d.book118.com/487103133144006142

