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In multimedia annotation, due to the time constraints
and the tediousness of manual tagging, it is quite common
to utilize both tagged and untagged data to improve the per-
formance of supervised learning when only limited tagged
training data are available. This is often done by adding
a geometrically based regularization term in the objective
function of a supervised learning model. In this case, a
similarity graph is indispensable to exploit the geometri-
cal relationships among the training data points, and the
graph construction scheme essentially determines the per-
formance of these graph-based learning algorithms. How-
ever, most of the existing works construct the graph em-
pirically and are usually based on a single feature with-
out using the label information. In this paper, we propose
a semi-supervised annotation approach by learning an op-
timal graph (OGL) from multi-cues (i.e., partial tags and
multiple features) which can more accurately embed the re-
lationships among the data points. We further extend our
model to address out-of-sample and noisy label issue -
tensive experiments on four public datasets show the con-
sistent superiority of OGL over state-of-the-art methods by
up to 12% in terms of mea age precision.

1. Introduction
Recently, we have witnessed an exponential growth of

user generated s and images, due to the booming of so-

cial networks, such as and Flickr. Consequently,

there are increasing demands to effectively organize and ac-

cess these multimedia data via tagging. One promising di-

rection is to combine labeled data (often of limited amount)

and a huge pool of unlabeled data in forming abundant train-

ing resources for optimizing annotation models, which is re-

ferred to semi-supervised learning (SSL). This is often done

by adding a geometrically based regularization term in the

objective function of a supervised learning model. To ex-

ploit the geometrical relationships among the training data

points, the algorithms treat both labeled and unlabeled sam-

ples as vertices (nodes) in a graph and build pairwise edges

between these vertices which are weighed by the affinities

(similarities) between the corresponding sample pairs.

SSL has been widely studied [3, 28, 13, 32, 4] and ap-

plied to many challenging tasks [4, 2, 3] such as image an-

notation and image retrieval. By exploiting a large number

of unlabeled data with reasonable assumptions, SSL can re-

duce the need of expensive labeled data and thus achieve

promising results especially for noisy labels [25]. The har-

monic function approach [35] and local and global consis-

tency (LGC) [34] are two representative graph-based SSL

methods. The harmonic function approach [35] emphasizes

the harmonic nature of the energy function and LGC con-

siders the spread of label information in an iterative way.

While these two methods are transductive, manifold regu-

larization (MR) [1, 21] is inductive. In practice, MR extends

regression and SVM to semi-supervised learning methods

such as Laplacian Regularized Least Squares (LapRLS)

and Laplacian Support Vector Machines (LapSVM) re-

spectively by adding a geometrically based regularization

term [17].

Recently, many applications [33, 25, 24] were proposed.

Zhang et al. [33] extended LDA to semi-supervised dis-

criminant analysis, Tang et al. [25] addressed the noisy la-

bel issue for the task of semi-supervised image labeling, and

Song et al. [24] utilized weak-label information for cross-

media retrieval.

Since an informative graph is critical for the graph-



based algorithms, its construction has been extensively

studied [27, 3, 18, 22, 30, 23]. The most popular way

to construct a graph is the K- earest neighbor (or �-range

neighbor) method, where, for each data point, the sam-

ples are connected with its K-nearest neighbors (or �-
range-neighbor). Then the Gaussian-kernel can be used

to quantify the graphs. However, the tuning of σ in the

Gaussian-kernel approach is empirical [27]. Recently, it

has been proposed to learn the graph by considering the

pairwise distance-based and the reconstruction coefficients-

based methods. The former is based on the assumption

that close data points should have a high similarity and

vice v rsa. The latter ass mes that each data point can

be reconstructed as a linear combination of the other data

points. These two methods show different strengths and

weaknesses in various applications. However, most of these

graphs are constructed on a single information cue (e.g., vi-

sual feature, labels), and an optimal graph utilizing multiple

cues has rarely been addressed.

To address the above issues, in this work, we propose

learning an optimal graph (OGL) from multi- ues (i.e., par-

tial tags and multiple features), which can more accurately

encode the relationships between data points. Then, we in-

corporate the learned optimal graph with the SSL model,

and we further extend this model to address out-of-sample

extension and noisy label issues. It is worthwhile to high-

light the followin aspects of the proposed approach here:

• As far as we know, this is the first work to explicitly

learn an optimal graph both from labels and multiple

features and we propose an efficient way to solve the

optimization problem. The learned optimal graph can

automatically determine the confidence of the partial

tags and different visual features to more precisely re-

flect the relationships among data points.

• Our optimal gr ph lea ning method is a general frame-

other graph-based learning methods. Specifically, we

integrate OGL with the SSL method, and evaluate our

OGL for image and annotation.

of-sample extension, noisy label issues and different

graph construction methods for our models, to deal

with the real applications

• Experiments for image and annotation on real

world datasets demonstrate the superiority of OGL

over existing graph construction methods.

2. Related Work
There are generally two ways to build a similarity graph.

One is based on pairwise distances (e.g., Euclidean dis-

tance), and the other is based on reconstruction coefficients.

The first method is based on a reasonable assumption that

close data points should have a high similarity and vice

versa. The second method assumes that each data point

could be represented as a linear combination of the other

points. When the data are clean, i.e., the data points are

strictly sampled from the subspaces, several approaches are

able to recover the subspaces [16]. However, in real ap-

plications, the data set may lie at the union of multiple

subspaces or contain noise and outliers [18]. As a result,

inter-class data points may be connected with very high

weights. Hence, eliminating the effects of errors becomes a

major challenge. To address these pro lems, several algo-

rithms have been proposed, e.g., Lo ally Linear Manifold

Clust ring (LLMC) [7], Agglomerative Lossy Compression

(ALC) [19], Sparse Subspace Clustering (SSC) [5], L1-

graph [3, 29], Low Rank Representation (LRR) [10, 9],

Latent Low Rank Representation (LatLRR) [11], Fixed

Rank Representation (FRR) [12], L2Graph [18] (please re-

fer to [26] for a comprehensive survey on these algorithms).

Of the abov methods, SSC [5] and L1-graph [3] ob-

tain a sparse similarity graph from the sparsest coeffi-

cients. One of the main differences between these two tech-

niques is that [5] formulates the noise and outliers in the

objective function and provides more theoretical analysis,

whereas [3] derives a series of algorithms upon the L1-

graph for various tasks. The popular LRR model [10, 9]

and it tensions [11, 12] are very similar to SSC, except

that they aim to obtain a similarity graph from the lowest-

rank representation rather than the sparsest one. Both �1 and

rank-minimization-based methods can automatically select

neighbors for each data point by adopting the sparse so-

lution, and have achieved impressive results in numerous

applications. H wever, their computational complexity is

proportional to the cube of the problem size Moreover,

SSC requires that t e corruption over each data point has

a sparse structure, and LRR assumes that only a small por-

tion of the data is contaminated, otherwise the performance

will degrade. In fact, these wo problems are mainly caused

by the adopted error-handling strategy, i.e., remo ing the

errors from the data set to obtain a clean dictionary over

which each sample is encoded [18].

Differently, our OGL (described in the next section)

eliminates the effects of errors and builds a more precise

graph by considering both partial tags and multiple features,

and automati ally assigning a higher confidence to good

performed graphs constructed on each information cue.

3. Our Approach
In this section, we introduce our method OGL which

consists of two phases (see Fig. 1). Firstly, a similar-

ity graph is constructed on each feature (multiple feature

graph) and also on the partial tags (partial label graph) to

exploit the relationship among the data points. Partial tags

studied [27, 3, 18, 22, 30, 23]. The most popular way

to construct a graph is the K-nearest neighbor (or �-range

ples are connected with its K-nearest neighbors (or �-

to quantify the graphs. However, the tuning of σ in the

be reconstructed as a linear combination of the other data

cues has rarely been addressed.

light the following aspects of the proposed approach here:

•
learn an optimal graph both from labels and multiple

optimization problem. The learned optimal graph can

tags and different visual features to more precisely re-

flect the relationships among data points.

• Our optimal graph learning method is a general frame-

work, and theoretically, it can be incorporated with

other graph-based learning methods. Specifically, we

integrate OGL with the SSL method, and evaluate our

OGL for image and annotation.

• We further discuss and propose solutions for out-

graph construction methods for our models, to deal

with the real applications.

•
world datasets demonstrate the superiority of OGL

over existing graph construction methods.

2. Related Work
There are generally two ways to build a similarity graph.

close data points should have a high similarity and vice

Of the above methods, SSC [5] and L1-graph [3] ob-

cients. One of the main differences between these two tech-

whereas [3] derives a series of algorithms upon the L1-

rank representation rather than the sparsest one. Both �1 and

which each sample is encoded [18].

performed graphs constructed on each information cue.

3. Our Approach
In this section, we introduce our method OGL which



Figure 1. The overview of OGL.

means that tags are provided only for a part of the training

data. Then, the optimal graph learning is applied to these

graphs to construct an optimal graph, which is integrated

with SSL for the task of image and annotation. Note

that in theory our approach can be integrated with all kinds

of graph-based algorithms.

3.1. Terms and Notations

We first introduce the notations which will be used in the

rest of the paper. X = {x1, x2, ..., xn} represents a set of n
images, and yi = {0, 1}c is the label for the i-th image (1 ≤
i n), and c is the number of annotations/classes. The first

l points xi (i ≤ l) are labeled as Yl, and the remaining

u points xi (l + 1 ≤ i ≤ n) are unlabeled. The goal of

transductive graph-based SSL is to predict the label Fu of

the unlabeled points. Define a n × c matrix F =

�
Fl

Fu

�
with Fl = Yl and Fu = {0}u∗c.

Suppose that for each image, we have v features. Let

Xt = {xt
i}ni=1 denote the feature matrix of the t-th view of

training images, where t ∈ {1, ..., v}.

3.2. Optimal graph-based SSL

The traditional graph based semi-supervised learning

usually solves the following problem:

min
F,Fl=Yl

�
ij

�fi − fj�22sij (1)

where fi and fj are the labels for the i-th and j-th images,

and S is the affinity raph with each entry sij representing

the si ilarity between two images. The affinity graph S ∈
R

n×n is usually defined as follows:

sij =

�
e−�xi−xj�2

2/2σ
2

, if xi ∈ NK(xj) or xj ∈ NK(xi)
0, else

(2)

where NK(·) is the K-nearest neighbor set and 1 ≤ (i, j) ≤
n. The variance σ will affect the performance significantly,

and it i usually empirically tu ed. Also, the simil rity

graph is often derived from si gle nformation cue. To ad-

dress these issues, we propose to learn an optimal graph S
fr m multiple cues.

The mult ple ues include the given label in ormati n F
and the multiple features Xt = {xt

i}ni=1. An optimal graph

S hould be smooth on all these information cues, which

can be formulated as:

min
S,α

g (F, S) + μ

v�
t=1

αth
�
Xt, S

�
+ βr (S, α) (3)

where g (F, S) is the penalty function to measure the

smoothness of S on the label information F and (Xt, S)
is the loss function to mea ure th smoothn ss of S on the

feature Xt. r (S, α) are regularizers defined on the target S
and α. μ and β are balancing parameters, and αt determines

the importance of each feature.

The penalty function g (F, S) should be defined in such

a way t at close labels ave h gh similarity and vic versa.

In this paper, we defin it as follows:

g (F, S) =
�
ij

�fi − fj�22sij (4)

where fi and fj are the labels of data points xi and xj .

Similarly, h (Xt, S) can be defined as:

h
�
Xt, S

�
=

�
ij

��xt
i − xt

j

��2

2
sij (5)

Note that for simplicity, we use distance based method to

learn the similarity graph here. Other options based on

the reconstruction coefficients methods ca be utilized to

achiev ter performance, which is discussed in the next

section. Instead of preserving all the pairwise distances,

we consider preserving the pair distances of the K-nearest

neighbors here, i.e., if xt
i and xt

j (or fi and fj) are not K-

nearest neighbors of each other, their distance will be set to

a large constant. The regularizer erm (S, α) is defined as:

r (S, α) =
μγ

β
�S�2F + �α�22 (6)

We further constrain that S ≥ 0, S1 = 1, α ≥ 0 and

αT1 = 1, where 1 ∈ R
N×1 is a column vector with all

ones. Then we can obtain the objective function for learn-

ing the optimal graph by replacing g (F, S), h (Xt, S) and

r (S, α) in Eq.3 using Eq.4, Eq.5 and Eq.6. By combin-

ing Eq.1 with Eq.3, we can obtain the objective function for

Figure 1. The overview of OGL.

of graph-based algorithms.

3.1. Terms and Notations

We first introduce the notations which will be used in the

rest of the paper. X = {x1, x2, ..., xn} represents a set of n
images, and yi = {0, 1}c is the label for the i-th image (1 ≤
i ≤ n), and c is the number of annotations/classes. The first

l points xi (i ≤ l) are labeled as YlYlY , and the remaining

u points xi (l + 1 ≤ i ≤ n) are unlabeled. The goal of

transductive graph-based SSL is to predict the label FuFuF of

the unlabeled points. Define a n × c matrix F =

�
FlFlF
FuFuF

�
with FlFlF = YlYlY and FuFuF = {0}u∗c.

Suppose that for each image, we have v features. Let

Xt = {xt
i}ni=1 denote the feature matrix of the t-th view of

training images, where t ∈ {1, ..., v}.

3.2. Optimal graph-based SSL

usually solves the following problem:

min
F,FlF,FlF,F =YlYlY

�
ij

�fifif − fjfjf �22sij (1)

where fifif and fjfjf are the labels for the i-th and j-th images,

and S is the affinity graph with each entry sij representing

the similarity between two images. The affinity graph S ∈
R

n×n is usually defined as follows:

sij =

�
e−�xi−xj�2

2/2σ
2

, if xi ∈ NK∈ NK∈ N (xj) or xj ∈ NK∈ NK∈ N (xi)
0, else

n. The variance σ will affect the performance significantly,

dress these issues, we propose to learn an optimal graph S
from multiple cues.

The multiple cues include the given label information F
and the multiple features Xt = {xt

i}ni=1. An optimal graph

S should be smooth on all these information cues, which

can be formulated as:

min
S,α

g (F, S) + μ

v�
t=1

αth
�
Xt, S

�
+ βr (S, α) (3)

where g (F, S) is the penalty function to measure the

smoothness of S on the label information F and h (Xt, S)
is the loss function to measure the smoothness of S on the

feature Xt. r (S, α) are regularizers defined on the target S
and α. μ and β are balancing parameters, and αt determines

the importance of each feature.

The penalty function g (F, S) should be defined in such

In this paper, we define it as follows:

g (F, S) =
�
ij

�fifif − fjfjf �22sij (4)

where fifif and fjfjf are the labels of data points xi and xj .

Similarly, h (Xt, S) can be defined as:

h
�
Xt, S

�
=

�
ij

�����xt
i − xt

j

�����2

2
sij (5)

the reconstruction coefficients methods can be utilized to

we consider preserving the pair distances of the K-nearest

neighbors here, i.e., if xt
i and xt

j (or fifif and fjand fjand f ) are not K-

a large constant. The regularizer term r (S, α) is defined as:

r (S, α) =
μγ

β
�S�2F + �α�22 (6)

We further constrain that S ≥ 0, S1 = 1, α ≥ 0 and

αT1 = 1, where 1 ∈ R
N×1 is a column vector with all

ing the optimal graph by replacing g (F, S), h (Xt, S) and

r (S, α) in Eq.3 using Eq.4, Eq.5 and Eq.6. By combin-



optimal-graph based SSL, as follows:

min
S,F,α

	
ij

�fi − fj�22 sij + β �α�22

+μ


	
tij

�
αt

��xt
i − xt

j

��2

2
sij

�
+ γ �S�2F



s.t.

⎧⎨
⎩

S ≥ 0, S1 = 1
Fl = Yl

α ≥ 0, αT1 = 1

(7)

3.3. Iterative optimization

We propose an iterative method to minimize the above

objective function in Eq.7. Firstly, we initialize S =	
t S

t/v with each St being calculated using Eq.2, and

we initialize αt = 1/v. We further normalize S as S =
(D1/2)TSD1/2. Once these initial values are given, in each

iteration, we first update F given S and α, nd then update

S and α by fixing the other parameters. hese steps are

described elow.

3.3.1 Update F

By fixing S and α, we can obtain F by optimizing Eq.7.

This is equivalent to optimize the following obj ctive func-

tion:

min
F,Fl=Yl

�
ij

�fi − fj�22sij = min
F,Fl=Yl

��F (I − S)FT
��2

F
(8)

where I is an identity matrix. Let L = I − S, and differ-

entiate the objective function in Eq.8 with respect to F , we

obtain:

LF = 0 ⇒
�

Lll Llu

Lul Luu

� �
Fl

Fu

�
= 0

⇒
�

LllFl + LluFu = 0
LulFl + LuuFu = 0

(9)

Then we can obtain:

F ∗
u = −Luu

−1LulFl (10)

3.3. Update S

By fixing F and α, we can obtain S by optimizing Eq.7. It

is equivalent to optimize the following objective function:�
ij

�fi − fj�22 sij + μ
�
tij

�
αt

��xt
i − xt

j

��2

2
sij

�
(11)

+μγ �S�2F
It can be reformulated as:

min
S,S≥0,S1=1

	
i

tr
�
μγsisi

T + (ai + μbi) si
T
�

⇒ min
S,S≥0,S1=1

	
i

tr
�
sisi

T + ai+μbi
μγ si

T
� (12)

and it is equivalent to:

min
S,S≥0,S1=1

�
i

����si + ai + μbi
2μγ

����
2

2

(13)

i = {bij , 1 ≤ j ≤ n} with bij =
	
t
αt

��xt
i − xt

j

��2

2

and ai = {aij , 1 ≤ j ≤ n} ∈ R1×n with aij = �yi − yj�22.

The problem in Eq.13 is simplex and we use the acceler-

ated projected gradie t method to linearly solve this prob-

lem. The critical step of the projected gradient method is to

solve the following proximal problem:

min
x≥0,xT 1=1

1

2
�x− c�22 (14)

This proximal problem can be solved using KKT approach.

Then each si can be efficiently solved, and we can get the

updated graph S.

3.3.3 Update α

By fixing F and S, we can obtain α by optimizing Eq.7. It

is equivalent to optimize the following objective function:

min
α≥0,αT 1=1

μ
	
t
αt


	
ij

��xt
i − xt

j

��2

2
sij


+ β �α�22

⇒ min
α≥0,αT 1=1

μdα+ β �α�22
(15)

where d = {dt, 1 ≤ t ≤ v} with dt =
	
ij

��xt
i − xt

j

��2

2
sij .

It can be reformulated in the form of problem in Eq. 4 and

can be solved si ilarly to obtain .

We update F, S and α iteratively until the objective func-

tion Eq.7 converges.

4. Extensions of OGL
In this section, we discuss several issues for graph based

learning methods in real applications and provide the solu-

tions.

4.1. Out-of-sample extension

Out-of-sample refers to learning an annotation function

that is able to label new data points. This can be achieved

by adding a fitting model and a regularizer to the objective

function in Eq.7, e.g., �XW + 1b− F�2F+η �W�2F , where

W ∈ R
m×c, b ∈ R

1×c and 1 is a vector of all ones. To ob-

tain the optimal solution W ∗ and b∗, we set the derivatives

of the objective functio w th respect to W and b equals to

zero. We have:

b∗ =
1

n

�
1TF − 1TXW

�
(16)

min
S,F,α

	
ij

�fifif − fjfjf �22 sij + β �α�22

+μ


	
tij

�
αt

�����xt
i − xt

j

�����2

2
sij

�
+ γ �S�2F



s.t.

⎧⎨⎧⎨⎧
⎩
⎨
⎩
⎨ S ≥ 0, S1 = 1

FlFlF = YlYlY
α ≥ 0, αT1 = 1

(7)

3.3. Iterative optimization

We propose an iterative method to minimize the above

objective function in Eq.7. Firstly, we initialize S =	
t S

t/v with each St being calculated using Eq.2, and

we initialize αt = 1/v. We further normalize S as S =
(D1/2)TSD1/2. Once these initial values are given, in each

iteration, we first update F given S and α, and then update

S and α by fixing the other parameters. These steps are

described below.

3.3.1 Update F

By fixing S and α, we can obtain F by optimizing Eq.7.

tion:

min
F,FlF,FlF,F =YlYlY

�
ij

�fifif − fjfjf �22sij = min
F,FlF,FlF,F =YlYlY

�����F (I − S)FT
�����2

F
(8)

where I is an identity matrix. Let L = I − S, and differ-

entiate the objective function in Eq.8 with respect to F , we

obtain:

LF = 0 ⇒
�

Lll Llu

Lul Luu

� �
FlFlF
FuFuF

�
= 0

⇒
�

LllFlFlF + LluFuFuF = 0
LulFlFlF + LuuFuFuF = 0

(9)

Then we can obtain:

F ∗
uFuF = −Luu

−1LulFlFlF (10)

3.3.2 Update S

By fixing F and α, we can obtain S by optimizing Eq.7. It

is equivalent to optimize the following objective function:�
ij

�fifif − fjfjf �22 sij + μ
�
tij

�
αt

�����xt
i − xt

j

�����2

2
sij

�
(11)

+μγ �S�2F
It can be reformulated as:

min
S,S≥0,S1=1

	
i

tr
�
μγsisi

T + (ai + μbi) si
T
�

⇒ min
	

tr
�
sisi

T + ai+μbi
μγ si

T
� (12)

min
S,S≥0,S1=1

�
i

�������������si + ai + μbi
2μγ

�������������
2

2

(13)

where bi = {bij , 1 ≤ j ≤ n} with bij =
	
t
αt

�����xt
i − xt

j

�����2

2

and ai = {aij , 1 ≤ j ≤ n} ∈ R1×n with aij = �yi − yj�22.

solve the following proximal problem:

min
x≥0,xT 1=1

1

2
�x− c�22 (14)

Then each si can be efficiently solved, and we can get the

updated graph S.

3.3.3 Update α

By fixing F and S, we can obtain α by optimizing Eq.7. It

is equivalent to optimize the following objective function:

min
α≥0,αT 1=1

μ
	
t
αt


	
ij

�����xt
i − xt

j

�����2

2
sij


+ β �α�22

⇒ min
α≥0,αT 1=1

μdα+ β �α�22
(15)

where d = {dt, 1 ≤ t ≤ v} with dt =
	
ij

�����xt
i − xt

j

�����2

2
sij .

can be solved similarly to obtain α.

We update F, S and α iteratively until the objective func-

tion Eq.7 converges.

4. Extensions of OGL

tions.

4.1. Out-of-sample extension

function in Eq.7, e.g., �XW + 1b− F�2F+η �W�2F , where

W ∈ R
m×c, b ∈ R

1×c and 1 is a vector of all ones. To ob-

tain the optimal solution W ∗ and b∗, we set the derivatives

of the objective function with respect to W and b equals to

zero. We have:

∗ 1 �
T T

�



W ∗ =
�
XTLcX + ηI

�−1
XTLcF (17)

where X is the concatenation of different features Xt, and

Lc = I − 11T . Then �XW + 1b− F�2F + η �W�2F can be

reformulated as:

tr(FTBF ) (18)

where B = Lc − LcX
�
XTLcX + ηI

�−1
XTLc. Then, by

adding this fitting model, F can be obtained by solving:

min
F

trFT (I − S + ωB)F + tr(F − Y )
T
U (F − Y )

⇒ F ∗ = (I + U − S + ωB)
−1

UY
(19)

where ω is the parameter for the fitting model. Then we can

obtain the annotation function W and b. Note that other fit-

ting models can lso be applied here, e.g., SVM, fast image

tagging [2]. In [2], Chen et al. address the incomplete tag-

ging problem by introducing a term B̃ o enrich the existing

jointly learn the annotation function W̃ and tag enrich func-

tion B̃, as follows:
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���B̃fi − xiW̃
���2

2
. For simplicity, we

utilize the least square regression model to tackle the out-of-

sample problem. Moreover, the performance can be further

improved by incorporating better fitting models.

4.2. Noisy labels

The user-provided tags may be noisy. To address this

issue, instead of limiting that the predicted labels Fl are

strictly equal to the given hard labels Yl, we introduce a

soft error term �Fl − Yl�2F to release this constraint. Then,

by fixi g S and α, F is obtained by solving:

min
F

	
ij

�fi − fj�22sij + μ �Fl − Yl�2F
= min

F
trFT (I − S)F + tr(F − Y )

T
U (F − Y )

(20)

where U ∈ R
n×n is a diagonal matrix. By setting the

derivative of the Eq.20 w.r.t F to zero, we ha e:

∗ − SF ∗ + U (F ∗ − Y ) = 0
⇒ F ∗ = (I + U − S)−1UY

(21)

where Y =

�
Yl

Yu

�
with Yu = {0}u∗c. Experimental re-

sults show that Eq.21 has superior performance over Eq.10.

4.3. Different graph construction models

In our work, we utilize a distance-based method to con-

struct the similarity graph in Eq.4 and Eq.5 for simplicity.

OGL can be further extended by using different graph con-

struction models. One possible way is to adopt the recon-

struction coefficients methods, which can be calculated by

solving:

min
S

�
i

�xi −Disi� s.t 1T si = 1 (22)

where si ∈ R
n×1 is the coefficient of xi over Di and

Di consists of the K-nearest neighbors of xi in Euclidean

space.

Recently, some studies have exploite the inherent spar-

sity of sparse representation to obtain a block-diagonal

affinity matrix, e.g., SSC [5] and the L1-graph [3]. In [3],

the L1-graph is proposed for image analysis to solve the

following problem:

min
S

�si�1 s.t. �xi −Xisi�2 < δ (23)

where si ∈ R
n×1 is the sparse representation of xi over the

dictionary Xi and δ is the error tolerance.

An ther recently proposed method, LRR [10, 9], aims to

find the lowest-rank represen ation, r ther than the sparsest,

by solving:

min
S,E

rank (S) + λ�E�2,1, s.t. X = XS + E (24)

where S ∈ R
n×n is the coefficient matrix of X over the data

set itself and E is the reconstruction error. These graph con-

struction methods have reported superiority over distance-

based graph construction method. Our OGL can be fur-

ther improved if these graph construction methods were

adopted.

5. Experiments

We evaluate our algorithm on the task of image and

annotation. Firstly, we study the influence of the parameters

in our algorithm. The , we compare our results with state-

of-the-art algorithms on four standard datasets.

5.1. Experimental settings

5.1.1 Datasets

We consider four publicly available datasets that have been

widely used in previous work.

IXMAS. This dataset consists of 12 action classes

(e.g., check watch, cross arms and scratch head). Each ac-

tion i ecuted three times by 12 actors and is recorded

with five cameras observing the subjects from very differ-

ent perspectives.

NUS-WIDE. This image dataset contains 269,648 im-

ages downloaded from Flickr. Tagging ground-truth for

81 semantic concepts is provided for evaluation. Similar

to [14], we only use the images associated with the 10 most

frequent concept annotations obtaining 167,577 mages in

total.

ESP Game. It contains a wide variety of images includ-

ing logos, drawings, and al photos. Following [2],

we use the subset of 20,000, out of the 60,000 images pub-

licly available.

W =
�
X LcX + ηI

�
X LcF (17)

where X is the concatenation of different features Xt, and

Lc = I − 11T . Then �XW + 1b− F�2F + η �W�2F can be

reformulated as:

tr(FTBF ) (18)

where B = Lc − LcX
�
XTLcX + ηI

�−1
XTLc. Then, by

adding this fitting model, F can be obtained by solving:

min
F

trFT (I − S + ωB)F + tr(F − Y )
T
U (F − Y )

⇒ F ∗ = (I + U − S + ωB)
−1

UY
(19)

where ω is the parameter for the fitting model. Then we can

obtain the annotation function W and b. Note that other fit-

ging problem by introducing a term B̃ to enrich the existing

jointly learn the annotation function W̃ and tag enrich func-

tion B̃, as follows:
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F
trFT (I − S)F + tr(F − Y )

T
U (F − Y )

(20)

where U ∈ R
n×n is a diagonal matrix. By setting the

derivative of the Eq.20 w.r.t F to zero, we have:
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⇒ F ∗ = (I + U − S)−1UY

(21)
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Di consists of the K-nearest neighbors of xi in Euclidean

space.
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S
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where si ∈ R
n×1 is the sparse representation of xi over the

dictionary Xi and δ is the error tolerance.

by solving:

min
S,E

rank (S) + λ�E�2,1, s.t. X = XS + E (24)

where S ∈ R
n×n is the coefficient matrix of X over the data

set itself and E is the reconstruction error. These graph con-
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5. Experiments
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