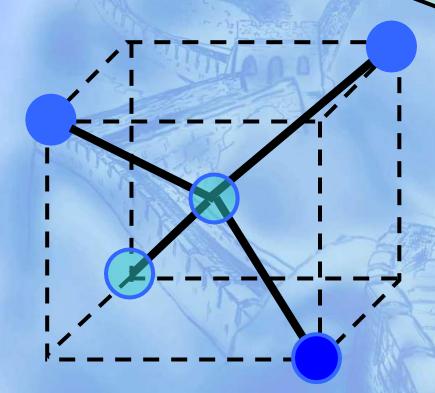
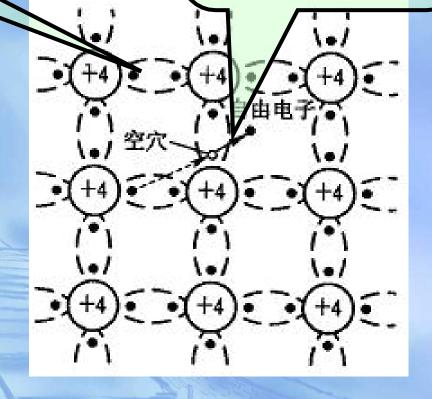


上节课内容回忆

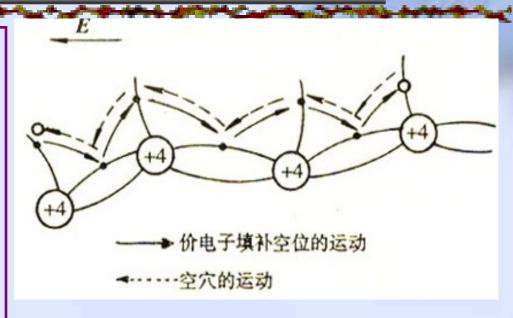

- 绪论
- 半导体


晶体构造、导电特征、导电机理

☆常用的半导体材料

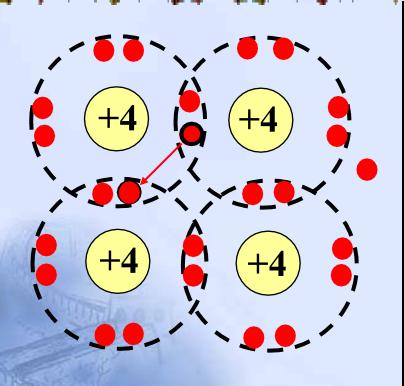
☆本征半导体——化学成份纯净的半导体 共价键构造 本征激发 本征半导体中的载流子 共价键—— 共用价电子对

在本征半导体中,空穴和自由电子总是成对出现的。



硅和锗的晶体构造

本征激发示意图


空穴"运动"

在电场作用下,价 电子定向弥补空位,使 空位作相反方向的移动, 这与带正电荷的粒子作 定向运动的效果完全相 同。为了区别于自由电 子的运动,就把价电子 的运动虚拟为空穴运动, 但运动方向相反。

空穴的运动是靠相邻 共价键中的价电子依次充 填空穴来实现的。

3. 本征半导体中的两种载流子

运载电荷 的粒子称 为载流子。 空穴的迁移 相当于正电 荷的移动

本征半导体中的两种载流子:自由电子和空穴

不同于导体导电只有一种载流子——自由电子导电,本征半导体中,有两种载流子参加导电。

4. 本征浓度

- 载流子复合:自由电子与空穴在热运动中相遇,使两者同步消失的现象。
- 载流子的动态平衡:在一定温度下,单位时间内本征激发所产生的自由电子—空穴正确数目与复合而消失的自由电子—空穴正确数目相等,就到达了载流子的动态平衡状态,使本征半导体中载流子的浓度一定。

本征载流子的浓度:

$$n_i = p_i = BT^{\frac{3}{2}}e^{-\frac{E_g}{2kT}}$$
 (1.1)

式中 $_{N_{i}}$ 、 $_{P_{i}}$ 分别表示电子和空穴的浓度($_{cm^{-1}}$), $_{I}$ 为热力学温度($_{K}$), $_{k}$ 为波尔兹曼常数($_{8.63\times10^{-3}}$ $_{eV}$), $_{E_{i}}$ 为 $_{I}$ T=0 $_{K}$ 时破坏共价键所需的能量,又称禁带宽度($_{eV}$), $_{B}$ 是与半导体材料有关的常数($_{cm^{-3}K^{-\frac{1}{2}}}$)。 $_{eV}$

本征半导体导电能力取决于其载流子的浓度。温度越高,本征载流子的浓度越高,所以本征半导体的导电能力越强。

Si、Ge材料特征比较(一)

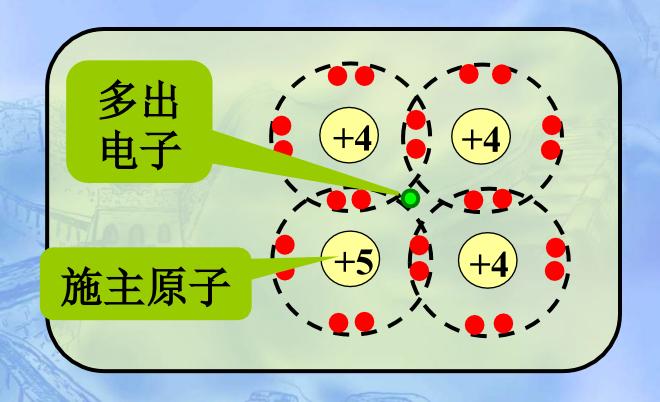
$$B = \begin{cases} 3.87 \times 10^{16} \text{cm}^{-3} \text{K}^{-3/2} & \text{(Si)} \\ 1.76 \times 10^{16} \text{cm}^{-3} \text{K}^{-3/2} & \text{(Ge)} \end{cases}$$

$$E_{\rm g}$$
(禁带宽度) =
$$\begin{cases} 1.21 \text{ eV} & \text{(Si)} \\ 0.785 \text{ eV} & \text{(Ge)} \end{cases}$$

T=300K,
$$n_i(Si) \approx 1.43 \times 10^{10} \text{cm}^{-3}$$

 $n_i(Ge) \approx 2.38 \times 10^{13} \text{cm}^{-3}$

可见,半导体参加导电的载流子含量极小,导电性差。 Si材料的热稳定性优于Ge材料的热稳定性。


1.1.2 杂质半导体

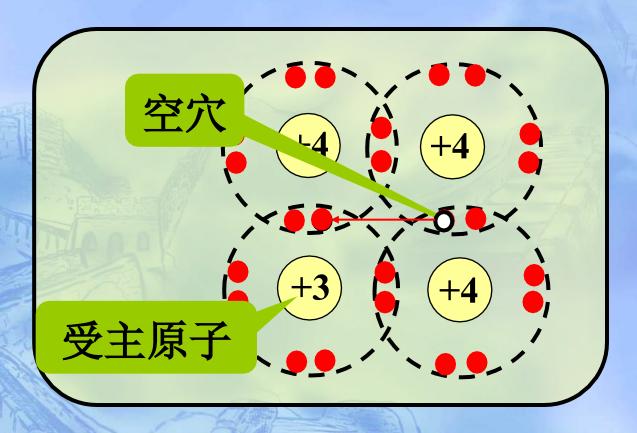
杂质半导体——掺入杂质的半导体 在本征半导体中掺入某些微量的杂质, 就会使半导体的导电性能发生明显变化。其 原因是掺杂半导体的某种载流子浓度大大增 长。

> N型半导体 P型半导体 杂质半导体的载流子浓度

1. N型半导体

- 在本征Si或Ge中掺入少许的V族元素(如磷、砷、锑等)后,自由电子浓度大大增长的杂质半导体称为N型半导体,也称为电子半导体。
- 杂质原子替代晶体点阵中的某些Si原子,它的四个价电子与相邻的四个Si原子形成稳定的共价键时,多出的一种价电子只能位于共价键之外,且几乎不受束缚,很轻易被激发而成为自由电子。
- 因杂质原子"施舍"电子,被称为施主原子,这一现象称为施主电离。施主电离产生自由电子-正离子对,不产生空穴。
- 施主离子被束缚在晶格中,不能自由移动,因而不能 参加导电。

N型半导体中的载流子是什么?

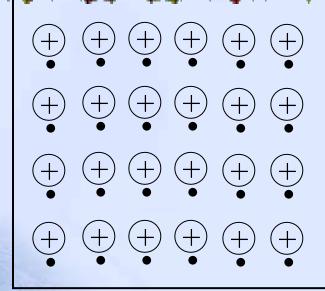

- 1. 由施主原子提供的电子,浓度与施主原子相同。
- 2. 本征激发成对产生的电子和空穴。

N型半导体的特点

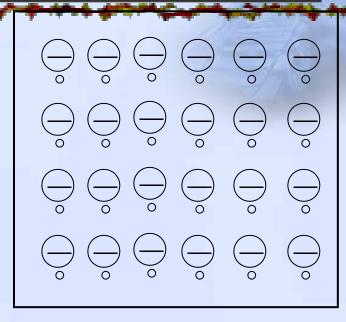
- 1. 总的空穴数 = 本征激发空穴数
- 2. 总的自由电子数 = 本征激发的自由电子数+ 杂质原子产生的自由电子数
- 3. 掺杂浓度远不小于本征半导体中载流子浓度, 所以, 自由电子浓度远不小于空穴浓度。自由电子称为多数载流子(多子), 空穴称为少数载流子(少子)。
- 4. 在无外电场时,呈电中性

2. P型半导体

- 在本征Si或Ge中掺入少许Ⅲ族元素(如硼、铝和铟等)后,空穴浓度大大增长的杂质半导体称为P型半导体,也称为空穴半导体。
- 杂质原子替代晶体点阵中的某些Si原子,它的三个价电子与相邻的四个Si原子形成稳定的共价键时,只有三个共价键是完整的,第四个共价键因缺乏一种价电子而出现一种"空位"(电中性)。这个空位极易被邻近Si原子共价键中的价电子弥补,使杂质原子多出一种价电子而成为不可移动(所以,不参加导电)的负离子,同步在邻近产生一种空穴。
- 因杂质原子"接受"价电子,被称为受主原子,这一现象称为受主电离。受主电离产生空穴-负离子对,不产生自由电子。


P型半导体中的载流子是什么?

- 1、因受主原子产生的空穴,浓度与受主原子相同。
- 2、本征半导体中本征激发的电子-空穴对。


P型半导体的特点

- 1. 总的自由电子数 = 本征激发自由电子数
- 2. 总的空穴数 = 本征激发的空穴数+ 因杂质原子产生的空穴数
- 3. 掺杂浓度远不小于本征半导体中载流子浓度,所以,空穴浓度远不小于自由电子浓度。空穴称为多数载流子(多子),自由电子称为少数载流子(少子)。
- 4. 在无外电场时,呈电中性

杂质半导体的示意表达法

N 型半导体

P型半导体

杂质半导体多子和少子的移动都能形成 电流。但因为数量的关系,起导电作用的主 要是多子。

3. 杂质半导体的载流子浓度

$$n_o p_o = n_i^2$$
 (1.2)

其中: n_0 是热平衡条件下自由电子的浓度 P_0 是热平衡条件下空穴的浓度 n_i 是本征浓度

- N型半导体: $n_0 = N_d + p_0 \approx N_d$; N_d —施主原子浓度
- P型半导体: $p_0=N_a+n_0\approx N_a$; N_a —受主原子浓度
- (1) 掺杂后,多子浓度都将远不小于少子浓度。且少 许掺杂,载流子就会有几种数量级的增长,即 导电能力明显增大。
- (2) 在杂质半导体中,多子浓度近似等于掺杂浓度, 其值几乎与温度无关。
- (3) 在杂质半导体中,少子浓度随温度升高而明显增大。少子浓度的温度敏感性是造成半导体器件温度特征差的主要原因。

掺杂对半导体导电性的影响

掺入杂质对本征半导体的导电性有很大 的影响,某些经典的数据如下:

- ① T=300 K室温下,本征硅的电子和空穴浓度: $n=p=1.4\times10^{10}/\text{cm}^3$
- ② 掺杂后 N 型半导体中的自由电子浓度: $n=5\times10^{16}/\text{cm}^3$
- 3 本征硅的原子浓度: 4.96×10²²/cm³

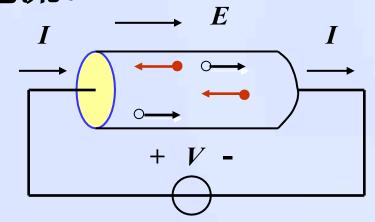
以上三个浓度基本上依次相差10⁶/cm³。

1.1.3 半导体中的电流

载流子的运动形式

两种导电机理 ——漂移和扩散 : 载流 高的区 低的区 力。

漂移电流


扩散电流

1. 漂移电流

在电场作用下,半导体中的载流子受电场力作宏观定向漂移运动形成的电流。它类似于金属导体内的传导电流。

电子的漂移电流密度为

$$J_n = qn\mu_n E \qquad (1.7)$$

q--电子的电量; n--电子的浓度; E--电场强度;

μ_n 一电子的迁移率; 表征电子在半导体中运动轻易度的参数 空穴顺电场方向作定向运动,形成空穴电流,空穴旳漂移电流密度为:

$$J_p = qp\mu_p E \tag{1.8}$$

p --空穴的浓度; μ_p --是空穴迁移率 J_n 和 J_p 的方向是一致的,均为空穴流动的方向

总的漂移电流密度

$$J = J_n + J_p = qn\mu_n E + qp\mu_p E = \sigma E$$
 (1.10)

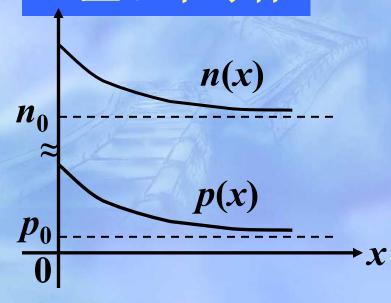
其中, $\sigma = qn\mu_n + qp\mu_p$ 是半导体的电导率,与载流子浓度、迁移率有关。

2. 扩散电流

因载流子浓度差而产生的载流子宏观定向运动形成的电流。

半导体中某处的扩散电流主要取决于 该处载流子的浓度差(即浓度梯度),而 与该处的浓度值无关。即扩散电流与载流 子在扩散方向上的浓度梯度成正比,浓度 差越大,扩散电流也越大。

扩散电流:


$$J_{\mathrm{d}} = J_{\mathrm{pd}} + J_{\mathrm{nd}}$$

$$J_{\rm pd} = -qD_{\rm p} \frac{\mathrm{d}p(x)}{\mathrm{d}x}$$

$$J_{\text{nd}} = - (-q) D_{\text{n}} \frac{dn(x)}{dx} = qD_{\text{n}} \frac{dn(x)}{dx}$$

由扩散运动产生的扩散电流是半导体区 别于导体的一种特有的电流.

N型硅半导体

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/518074043060007020