

Fr eRTOS
Christopher Svec

RTOS (pronounced " -arr-toss") is an open source real-time operating system (RTOS) for embedded systems. RTOS supports many different
architectures and compiler toolchains, and is designed to be "small, simple, and easy to use".

RTOS is under active development, and has been s e Richard Barry started work on it in 2002. As for me, I'm not a developer of or contributor to RTOS,
I'm merely a user and a fan. As a result, this chapter will favor the "what" and "how" of RTOS's architecture, with less of the "why" than other chapters in this
book.

Like all operating systems, RTOS's main job is to run tasks. Most of RTOS's code involves prioritizing, scheduling, and running user-defined tasks. Unlike all
operating systems, RTOS is a real-time operating system which runs on embedded systems.

By of this chapter I hope that you'll understand the basic architecture of RTOS. Most of RTOS is dedicated to running tasks, so you'll get a good look
at exactly how RTOS does that.

If this is your first look under the hood of an operating system, I also hope that you'll learn the basics about how any OS works. RTOS is relatively simple,
especially when compared to Windows, Linux, or OS X, but all operating systems share the same basic concepts and goals, so looking at any OS can be instructive
and interesting.

3.1. What is "Embedded" and "Real-Time"?
"Embedded" and "real-time" can mean different things to different people, so let's def hem as RTOS uses them.

An embedded system is a computer system that is designed to do only a few things, like the system in a TV remote control, ar GPS, digital watch, or pacemaker.
Embedded systems are typically smaller and slower than general purpose computer systems, and are also usually les pensive. A typical low-end embedded
system may have an 8-bit CPU running at 25MHz, a few KB of RAM, and maybe 32KB of flash memory. A higher-end embedded system may have a 32-bit CPU
running at 750MHz, a GB of RAM, and multiple GB of flash memory.

Real-time systems are designed to do something within a certain amount of time; they guarantee that stuff happens when it's supposed to.

A pacemaker is an excellent example of a real-time embedded system. A pacemaker must contract the heart muscle at the right time to keep you alive; it can't be
too busy to respond in time. Pacemakers and other real-time embedded systems are carefully designed to run their tasks on time, every time.

3.2. Architecture Overview
RTOS is a relatively small application. The minimum core of RTOS is only three source (.c) files and a handful of header files, totalling just under 9000

lines of code, luding comments and blank lines. A typical binary code image is less than 10KB.

RTOS's code breaks down into three main areas: tasks, communication, and hardware interfacing.

Tasks: Almost half of RTOS's core code deals with the central concern in many operating systems: tasks. A task is a user-defined C function with a given
priority. and do all the heavy lifting for creating, scheduling, and maintaining tasks. task.h

Communication: Tasks are good, but tasks that can communicate with each other are even better! Which brings us to the second RTOS job:
communication. About 40% of RTOS's core code deals with communication. and handle RTOS communication. Tasks and interrupts queue.c queue.h

use queues to send data to each other and to signal the use of critical resources using semaphores and mutexes.
The Hardware Whisperer: The approxima y 9000 lines of code that make up the base of RTOS are hardware- t; the same code runs
whether RTOS is running on the humble 8051 or the newest, shiniest ARM core. About 6% of RTOS's core code acts a shim between the hardware-

t RTOS core and the hardware-dependent code. We'll discuss the hardware-dependent code in the next section.

Hardware Considerations
The hardware- t RTOS layer sits on top of a hardware-dependent layer. This hardware-dependent layer knows how to talk to whatever chip
architecture you choose. Figure 3.1 shows RTOS's layers.

Figure 3.1: RTOS software layers
RTOS ships with all the hardware- t as well as hardware-dependent code you'll need to get a system up and running. It supports many compilers

(CodeWarrior, GCC, IAR, etc.) as well as many processor architectures (ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, x86, etc.). See the RTOS
website for a list of supported architectures and compilers.

RTOS is highly configurable by design. RTOS can be built as a single CPU, bare-bones RTOS, supporting only a few tasks, or it can be built as a highly
functional multicore beast with TCP/IP, a file system, and USB.

converted by

 tasks.c

RTOS
Christopher Svec

RTOS (pronounced " -arr-toss") is an open source real-time operating system (RTOS) for embedded systems. RTOS supports many different
architectures and compiler toolchains, and is designed to be "small, simple, and easy to use".

RTOS is under active development, and has been s e Richard Barry started work on it in 2002. As for me, I'm not a developer of or contributor to RTOS,
I'm merely a user and a fan. As a result, this chapter will favor the "what" and "how" of RTOS's architecture, with less of the "why" than other chapters in this
book.

Like all operating systems, RTOS's main job is to run tasks. Most of RTOS's code involves prioritizing, scheduling, and running user-defined tasks. Unlike all
operating systems, RTOS is a real-time operating system which runs on embedded systems.

By of this chapter I hope that you'll understand the basic architecture of RTOS. Most of RTOS is dedicated to running tasks, so you'll get a good look
at exactly how RTOS does that.

If this is your first look under the hood of an operating system, I also hope that you'll learn the basics about how any OS works. RTOS is relatively simple,
especially when compared to Windows, Linux, or OS X, but all operating systems share the same basic concepts and goals, so looking at any OS can be instructive
and interesting.

3.1. What is "Embedded" and "Real-Time"?
"Embedded" and "real-time" can mean different things to different people, so let's def hem as RTOS uses them.

An embedded system is a computer system that is designed to do only a few things, like the system in a TV remote control, ar GPS, digital watch, or pacemaker.
Embedded systems are typically smaller and slower than general purpose computer systems, and are also usually les pensive. A typical low-end embedded
system may have an 8-bit CPU running at 25MHz, a few KB of RAM, and maybe 32KB of flash memory. A higher-end embedded system may have a 32-bit CPU
running at 750MHz, a GB of RAM, and multiple GB of flash memory.

Real-time systems are designed to do something within a certain amount of time; they guarantee that stuff happens when it's supposed to.

A pacemaker is an excellent example of a real-time embedded system. A pacemaker must contract the heart muscle at the right time to keep you alive; it can't be
too busy to respond in time. Pacemakers and other real-time embedded systems are carefully designed to run their tasks on time, every time.

3.2. Architecture Overview
RTOS is a relatively small application. The minimum core of RTOS is only three source (.c) files and a handful of header files, totalling just under 9000

lines of code, luding comments and blank lines. A typical binary code image is less than 10KB.

RTOS's code breaks down into three main areas: tasks, communication, and hardware interfacing.

Tasks: Almost half of RTOS's core code deals with the central concern in many operating systems: tasks. A task is a user-defined C function with a given
priority. tasks.c and task.h do all the heavy lifting for creating, scheduling, and maintaining tasks.
Communication: Tasks are good, but tasks that can communicate with each other are even better! Which brings us to the second RTOS job:
communication. About 40% of RTOS's core code deals with communication. queue.c and queue.h handle RTOS communication. Tasks and interrupts
use queues to send data to each other and to signal the use of critical resources using semaphores and mutexes.
The Hardware Whisperer: The approxima y 9000 lines of code that make up the base of RTOS are hardware- t; the same code runs
whether RTOS is running on the humble 8051 or the newest, shiniest ARM core. About 6% of RTOS's core code acts a shim between the hardware-

t RTOS core and the hardware-dependent code. We'll discuss the hardware-dependent code in the next section.

Hardware Considerations
The hardware- t RTOS layer sits on top of a hardware-dependent layer. This hardware-dependent layer knows how to talk to whatever chip
architecture you choose. Figure 3.1 shows RTOS's layers.

Figure 3.1: RTOS software layers
RTOS ships with all the hardware- t as well as hardware-dependent code you'll need to get a system up and running. It supports many compilers

(CodeWarrior, GCC, IAR, etc.) as well as many processor architectures (ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, x86, etc.). See the RTOS
website for a list of supported architectures and compilers.

RTOS is highly configurable by design. RTOS can be built as a single CPU, bare-bones RTOS, supporting only a few tasks, or it can be built as a highly
functional multicore beast with TCP/IP, a file system, and USB.

converted by Web2PDFConve

Configuration options are selected in by setting various #defines . Clock speed, heap size, mutexes, and API subsets are all configurable in this RTOSConfig.h

file, along with many other options. Here are a few examples that set the um number of task priority levels, the CPU frequency, the system tick frequency, the
minimal stack size and the total heap size:

#define configMAX_PRIORITIES

#define configCPU_CLOCK_HZ

#define configTICK_RATE_HZ

((unsigned portBASE_TYPE) 5)

(UL)

((portTickType) 1000)

#define configMINIMAL_STACK_SIZE ((unsigned short) 100)

#define configTOTAL_HEAP_SIZE ((size_t) (4 * 1024))

Hardware-dependent code lives in separate files for each compiler toolchain and C rchitecture. For example, if you're working with the IAR compiler on an ARM
Cortex-M3 chip, the hardware-dependent code lives in the directory. declares all of the hardware-specific RTOS/Source/portable/IAR/ARM_CM3/ portmacro.h

functions, while and contain all of the actual hardware-dependent code. The hardware- t header file # lude 's the .c portasm.s portable.h

correct file at compile time. RTOS calls the hardware-specific functions using #define 'd functions declared in portmacro.h .

Let's look at an example of how RTOS calls a hardware-dependent function. The hardware- t file tasks.c frequently needs to en critical section
of code to prevent preemption. Entering a critical section happens differently on different architectures, and the hardware- t tasks.c does not want to

orks. have to understand the hardware-dependent details. So tasks.c calls the global macro
Assuming we're using the IAR compiler on an ARM Cortex-M3 chip, RTOS is built with the file which RTOS/Source/portable/IAR/ARM_CM3/portmacro.h

defines like this:

#define portENTER_CRITICAL() vPortEnterCritical()

is actually defined in RTOS/Source/portable/IAR/ARM_CM3/port.c . The file is hardware-dependent, and contains code that vPortEnterCritical() port.c

understands the IAR compiler and the Cor ical section using this hardware-specific knowledge and returns to the
hardware- t .

The file also defines an architecture's basic data types. Data types for basic integer variables, pointers, and the system timer tick data type are defined
like this for the IAR compiler on ARM Cortex-M3 chips:

#define portBASE_TYPE long // Basic integer variable type

#define portSTACK_TYPE unsigned long // Pointers to memory locations

typedef unsigned portLONG portTickType; // The system timer tick type

This method of using data types and functions through thin layers of may seem a bit complicated, but it allows RTOS to be recompiled for a #defines

comple y different system architecture by changing only the hardware-dependent files. And if you want to run RTOS on an architecture it doesn't currently
support, you only have to implement the hardware-dependent functionality which is much smaller than the hardware- t part of RTOS.

As we've seen, RTOS implements hardware-dependent functionality with C preprocessor #define macros. RTOS also uses #define for plenty of
hardware- t code. For non-embedded applications this frequent use of
for calling a function is not worth the advantages that "real" functions offer.

is a cardinal sin, but in many smaller embedded systems the overhead

3.3. Scheduling Tasks: A Quick Overview
Task Priorities and the Ready List
Each task has a user-assigned priority between 0 (the lowest priority) and the compile-time value of (the highest priority). For instance, if configMAX_PRIORITIES-1

is set to 5, then RTOS will use 5 priority levels: 0 (lowest priority), 1, 2, 3, and 4 (highest priority). configMAX_PRIORITIES

RTOS uses a "ready list" to keep track of all tasks that are currently ready to run. It implements the ready list as an array of task lists like this:

static xList pxReadyTasksLists[configMAX_PRIORITIES]; /* Prioritised ready tasks. */

iority 0 tasks,
.

is a list of all ready priority 1 tasks, and so on, all the way up to pxReadyTasksLists[1]

The System Tick
The heartbeat of a RTOS system is called the system tick. RTOS configures the system to generate a periodic tick interrupt. The user can configure the tick
interrupt frequency, which is typically in the millisecond range. Every time the tick interrupt fires, the function is called. vTaskSwitchContext()

selects the highest-priority ready task and puts it in the variable like this: pxCurrentTCB

/* Find the highest-priority queue that contains ready tasks. */

while(listLIST_IS_EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])))

{

configASSERT(uxTopReadyPriority);

--uxTopReadyPriority;

}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of the same

priority get an equal share of the processor time. */

listGET_OWNER_OF_NEXT_ENTRY (pxCurrentTCB, &(pxReadyTasksLists[uxTopReadyPriority]));

is guaranteed to be greater than or equal to the priority of the highest-priority ready task. The while() loop starts at Before the while loop starts, uxTopReadyPriority

priority level and walks down through the pxReadyTasksLists[] array to find the highest-priority level with ready tasks. uxTopReadyPriority

then grabs the next ready task from that priority level's ready list. listGET_OWNER_OF_NEXT_ENTRY ()

Now points to the highest-priority task, and when returns the hardware-dependent code starts running that task. pxCurrentTCB vTaskSwitchContext()

Those nine lines of code are the absolute heart of RTOS. The other 8900+ lines of RTOS are there to make sure those nine lines are all that's needed to

converted by

vTaskSwitchContext()

pxReadyTasksLists[0] is a list of all ready pr
pxReadyTasksLists[configMAX_PRIORITIES-1]

#define

portmacro.h

tasks.c

tex-M3 chip. vPortEnterCritical() enters the crit

portENTER_CRITICAL()

portENTER_CRITICAL() , glad to be ignorant of how it actually w

 port

portmacro.h

Configuration options are selected in RTOSConfig.h by setting various #defines . Clock speed, heap size, mutexes, and API subsets are all configurable in this
file, along with many other options. Here are a few examples that set the um number of task priority levels, the CPU frequency, the system tick frequency, the
minimal stack size and the total heap size:

#define configMAX_PRIORITIES ((unsigned portBASE_TYPE) 5)
#define configCPU_CLOCK_HZ (UL)
#define configTICK_RATE_HZ ((portT ickType) 1000)
#define configMINIMAL_STACK_SIZE ((unsigned short) 100)
#define configTOTAL_HEAP_SIZE ((size_t) (4 * 1024))

Hardware-dependent code lives in separate files for each compiler toolchain and C rchitecture. For example, if you're working with the IAR compiler on an ARM
Cortex-M3 chip, the hardware-dependent code lives in the RTOS/Source/portable/IAR/ARM_CM3/ directory. portmacro.h declares all of the hardware-specific
functions, while port.c and portasm.s contain all of the actual hardware-dependent code. The hardware- t header file portable.h # lude 's the
correct portmacro.h file at compile time. RTOS calls the hardware-specific functions using #define 'd functions declared in portmacro.h .

Let's look at an example of how RTOS calls a hardware-dependent function. The hardware- t file tasks.c frequently needs to en critical section
of code to prevent preemption. Entering a critical section happens differently on different architectures, and the hardware- t tasks.c does not want to
have to understand the hardware-dependent details. So tasks.c calls the global macro portENTER_CRITICAL() , glad to be ignorant of how it actually works.
Assuming we're using the IAR compiler on an ARM Cortex-M3 chip, RTOS is built with the file RTOS/Source/portable/IAR/ARM_CM3/portmacro.h which
defines portENTER_CRITICAL() like this:

#define portENTER_CRITICAL() vPortEnterCrit ical()

vPortEnterCrit ical() is actually defined in RTOS/Source/portable/IAR/ARM_CM3/port.c . The port.c file is hardware-dependent, and contains code that
understands the IAR compiler and the Cortex-M3 chip. vPortEnterCrit ical() enters the critical section using this hardware-specific knowledge and returns to the
hardware- t tasks.c .

The portmacro.h file also defines an architecture's basic data types. Data types for basic integer variables, pointers, and the system timer tick data type are defined
like this for the IAR compiler on ARM Cortex-M3 chips:

#define portBASE_TYPE long // Basic integer variable type
#define portSTACK_TYPE unsigned long // Pointers to memory locat ions
typedef unsigned portLONG portT ickType; // The system t imer t ick type

This method of using data types and functions through thin layers of #defines may seem a bit complicated, but it allows RTOS to be recompiled for a
comple y different system architecture by changing only the hardware-dependent files. And if you want to run RTOS on an architecture it doesn't currently
support, you only have to implement the hardware-dependent functionality which is much smaller than the hardware- t part of RTOS.

As we've seen, RTOS implements hardware-dependent functionality with C preprocessor #define macros. RTOS also uses #define for plenty of
hardware- t code. For non-embedded applications this frequent use of #define is a cardinal sin, but in many smaller embedded systems the overhead
for calling a function is not worth the advantages that "real" functions offer.

3.3. Scheduling Tasks: A Quick Overview
Task Priorities and the Ready List
Each task has a user-assigned priority between 0 (the lowest priority) and the compile-time value of configMAX_PRIORITIES-1 (the highest priority). For instance, if
configMAX_PRIORITIES is set to 5, then RTOS will use 5 priority levels: 0 (lowest priority), 1, 2, 3, and 4 (highest priority).

RTOS uses a "ready list" to keep track of all tasks that are currently ready to run. It implements the ready list as an array of task lists like this:

stat ic xList pxReadyTasksLists[configMAX_PRIORITIES]; /* Priorit ised ready tasks. */

pxReadyTasksLists[0] is a list of all ready priority 0 tasks, pxReadyTasksLists[1] is a list of all ready priority 1 tasks, and so on, all the way up to
pxReadyTasksLists[configMAX_PRIORITIES-1] .

The System Tick
The heartbeat of a RTOS system is called the system tick. RTOS configures the system to generate a periodic tick interrupt. The user can configure the tick
interrupt frequency, which is typically in the millisecond range. Every time the tick interrupt fires, the vTaskSwitchContext() function is called. vTaskSwitchContext()
selects the highest-priority ready task and puts it in the pxCurrentTCB variable like this:

/* Find the highest-priority queue that contains ready tasks. */
while(listLIST_IS_EMPTY(&(pxReadyTasksLists[uxTopReadyPriority])))
{
 configASSERT(uxTopReadyPriority);
 --uxTopReadyPriority;
}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list , so the tasks of the same
priority get an equal share of the processor t ime. */
listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB, &(pxReadyTasksLists[uxTopReadyPriority]));

Before the while loop starts, uxTopReadyPriority is guaranteed to be greater than or equal to the priority of the highest-priority ready task. The while() loop starts at
priority level uxTopReadyPriority and walks down through the pxReadyTasksLists[] array to find the highest-priority level with ready tasks.
listGET_OWNER_OF_NEXT_ENTRY() then grabs the next ready task from that priority level's ready list.

Now pxCurrentTCB points to the highest-priority task, and when vTaskSwitchContext() returns the hardware-dependent code starts running that task.

Those nine lines of code are the absolute heart of RTOS. The other 8900+ lines of RTOS are there to make sure those nine lines are all that's needed to

converted by Web2PDFConve

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/52534133122

3011103

https://d.book118.com/525341331223011103
https://d.book118.com/525341331223011103

