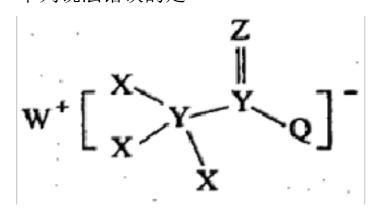
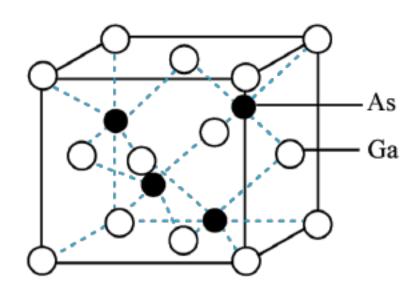

湖南省邵阳市 2022-2023 学年高三上学期第一次联考(一模)化学试题


- 一、单选题
- 1. 卡塔尔世界杯上, 化学无处不在, 下列说法错误的是
- A. C₆₀的结构酷似足球,故又称足球烯,它与金刚石互为同素异形体
- B. 在足球场上,足球裁判随身携带的"任意球喷雾器"能够喷出白色的喷雾,喷剂内含有的 丁烷能使酸性高锰酸钾溶液褪色
- C. 中国企业为卡塔尔世界杯建造的阿尔卡萨 800 兆瓦光伏电站解决了比赛场地用电问题。制造光伏电池的主要材料是晶体硅
- D. 氯乙烷气雾剂俗称足球运动场上的"化学大夫",用于治疗运动中的急性损伤,氯乙烷可以与 NaOH 水溶液在加热的条件下发生取代反应
- 2. 化学用语是学习化学的重要工具,下列说法正确的是
- A. 1H₂、2H₂、3H₂互为同位素

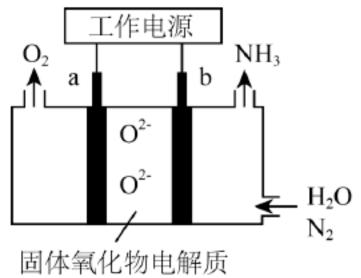
- C. 基态铜原子的价层电子排布式为3d94s2
- D. 通过核衰变得到的 45 Fe的中子数为 19
- 3. 用 N_A 表示阿伏加德罗常数的值,下列说法正确的是
- A. $1 molD_2$ 160和 $1 molH_2$ 180中质子数相等,中子数不相等
- B. 电解精炼铜时,电路中每通过 N_A 个电子,阴极析出 $32 {
 m gCu}$
- C. 常温常压下,1.4g 乙烯和丙烯混合气体含有极性键数为 $0.3N_A$
- D. 1molCl_2 与 NaOH 溶液完全反应,所得溶液中 $\mathbf{c} \left(\text{Cl-} \right) = \mathbf{c} \left(\text{ClO-} \right)$
- 4. 2022年12月最火爆的药物莫过于布洛芬,它可用于缓解疼痛,也可用于普通流感引起的发热。布洛芬结构简式如图,下列说法正确的是



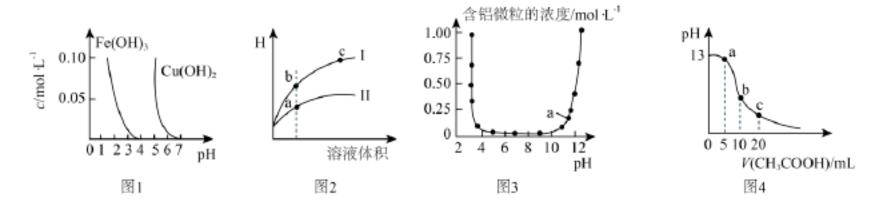
- A. 布洛芬能发生取代反应
- B. 布洛芬分子式是 $C_{13}H_{16}O_{2}$
- C. 布洛芬分子中含有两种含氧官能团
- D. 1mol 布洛芬与足量的 Na 反应生成1molH₂

5. 一种用于合成治疗免疫疾病药的物质,结构如图所示,其中 X、Y、Z、Q、W 为 1~20 号元素且原子序数依次增大,Z 与 Q 同主族,Q 和 W 的简单离子具有相同的电子层结构。下列说法错误的是

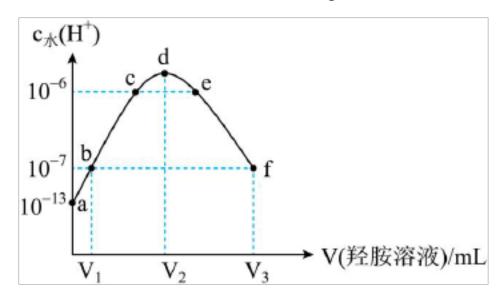
- A. 原子半径: W>Q
- B. Z 的氢化物的熔点低于 Q 的氢化物的熔点
- C. 阴离子 QZ_4^2 的 VSEPR 模型与其空间结构一致
- D. $W_2Q_2Z_3$ 溶液与 Q 的最高价氧化物对应的水化物反应有黄色浑浊和无色气体
- 6. 第二代半导体材料的代表物质 GaAs,其晶胞结构如图所示,阿伏加德罗常数的值为 N_A ,晶胞边长为 a pm。下列说法正确的是


- A. As 的配位数为8
- B. CaAs 晶体熔点很低
- C. 该晶体密度为 $\frac{5.8\times10^{32}}{N_{\rm A}\times a^3}$ g/cm³

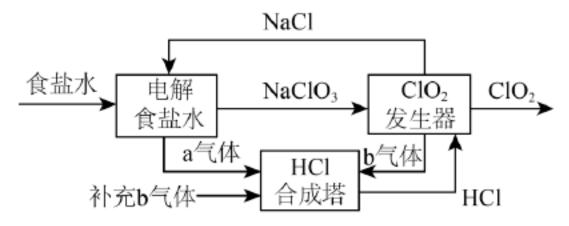
7. 下列设计的实验方案能达到相应实验目的的是


选项	实验目的	实验方案
A	证明SO ₂ 有漂白性	将SO ₂ 通入酸性高锰酸钾溶液中,溶液褪色
В	证明碳和浓硫酸共热产生的气体中含有CO ₂	将产生的气体直接通入澄清石灰水中,有白色沉淀 生成
С	测定0.1mol·L 壞水的 pH	用洁净的玻璃棒蘸取氨水点在湿润的 pH 试纸上,与标准比色卡对照读取 pH
D	证明"84"消毒液的氧化能力随 溶液 pH 的减小而增强	将"84"消毒液(含 NaClO)滴入品红溶液中,褪色缓慢,若同时加入醋酸,红色很快褪为无色

8. 一种电化学固氮的原理如图所示,已知 N≡N 的键能为946kJ·mol 1,N-N 的键能为193kJ·

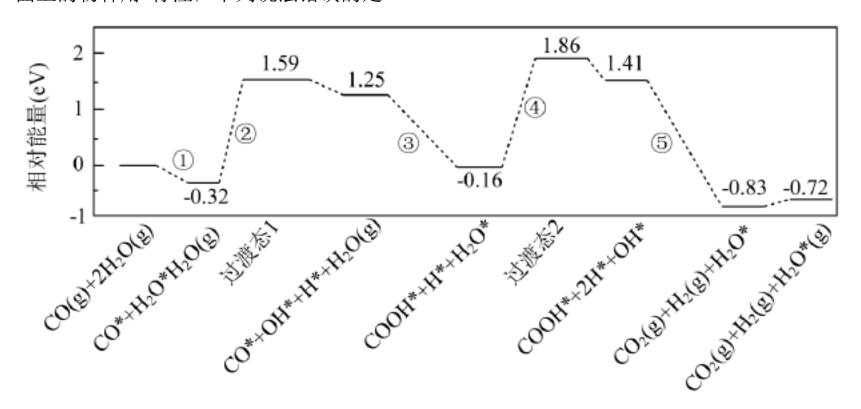

mol 1。下列说法正确的是

- M THICK CATA
- A. 在 b 电极上, N_2 被氧化
- B. 金属 Cu 可作为 a 电极的材料
- C. 电解过程中, 固体氧化物电解质中O2 数目保持不变
- D. N_2 分子中, π 键数和 σ 键数为 2:1,且 π 键键能小于 σ 键键能
- 9. 根据下列各图曲线表征的信息,得出的结论正确的是

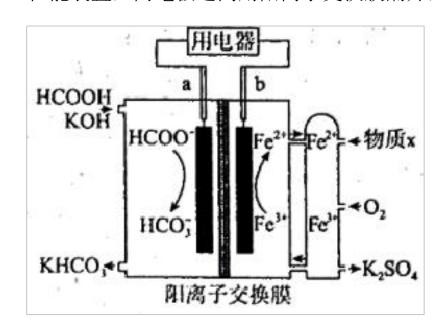

- A. 由图 1 得出若要除去 $CuSO_4$ 溶液中的 Fe^3 ,可采用向溶液中加入适量CuO,调节溶液的 pH 至 4 左右
- B. 图 2 表示用水稀释 pH 相同的盐酸和 CH_3COOH 溶液时,溶液的 pH 变化曲线,其中 I 表示盐酸,II 表示 CH_3COOH 溶液,且溶液导电性:c>b>a
- C. 图 3 表示Al3 与OH 反应时含铝微粒浓度变化曲线,图中 a 点溶液中大量存在Al3
- D. 图 4 表示常温下向体积为10mL0.1mol·L 1NaOH 溶液中逐滴加入0.1mol·L 1CH₃COOH 溶液后溶液的 pH 变化曲线,则 b 点处有: $c(Na) > c(CH_3COO) > c(H) > c(OH)$ 10. 常温下,将 0.1mol/L 羟胺溶液滴加到 20mL 的稀盐酸中,羟胺的电离方程式为: NH_2OH $H_2O \rightleftharpoons NH_3OH$ OH (常温时, $K_b = 9.0 \times 10$ 9,溶液中由水电离出的氢离子浓度随滴入羟胺溶液体积的变化如图(已知: lg3=0.5)),下列说法正确的是

- A. 该盐酸的浓度为 0.2mol/L
- B. b 点溶液中c(H) < c(OH)
- C. 0.1mo/L 羟胺溶液的 pH=9.5
- D. d 点对应溶液中存在: c(OH-)=c(H) (NH_2OH)
- 11. 下列各组澄清溶液中离子能大量共存,且滴入X试剂后发生的离子方程式书写正确的是

选项	离子组	X 试剂	离子方程式
A	NH ₄ 、Fe ³ 、SO ² ₄ 、Br	过量H ₂ S	2Fe ³ $H_2S = 2Fe^2$ $S \downarrow 2H$
В	Fe ² 、Na 、NO ₃ 、Cl	少量 HI	3Fe_2 NO_3 $4\text{H} = 3\text{Fe}_3$ $NO \uparrow 2\text{H}_2O$
С	NH ₄ 、Fe ³ 、AlO ₂ 、K	过量铜粉	2Fe ³ Cu ² = 2Fe ² Cu ²
D	Al ³ 、Na 、K 、CO ² ₃	少量 HCl	$H CO_3^2 = HCO_3$

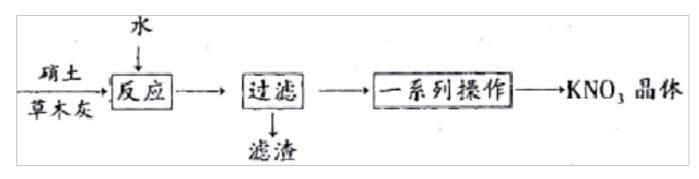

12. 为抑制新冠病毒传播, ClO_2 消毒剂被广泛使用。用氯化钠电解法生成 ClO_2 的工艺原理示意图如图,发生器内电解生成 ClO_2 ,下列说法正确的是

- A. a 气体是氯气, b 气体是氢气
- B. 食盐水电解槽内每生成 1mol a 气体, 转移1mole
- C. ClO_2 发生器中阴极的电极反应式为 $ClO_3 + 2H + + e = ClO_2 \uparrow + H_2O$
- D. 为使 a、b 气体恰好完全反应,理论上每生产1molCl 0_2 需要补充 44.8Lb 气体

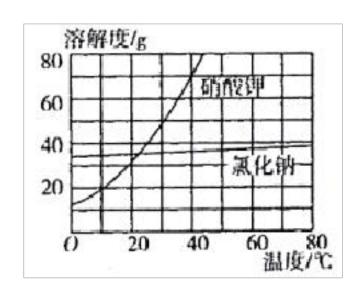

二、多选题

13. 水煤气变换反应为 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ 。我国学者结合实验与计算机模拟结果,研究了在金催化剂表面水煤气变换的反应历程,如下图所示,其中吸附在金催化剂表面上的物种用*标注,下列说法错误的是

- A. 水煤气变换反应的 $\Delta H > 0$
- B. 步骤③的化学方程式为CO*+OH*+ $H_2O(g) = COOH*+H_2O*$
- C. 步骤⑤只有极性键的形成
- D. 该历程中最大能垒(活化能) $E_{_{\mathrm{TF}}}=2.02\mathrm{eV}$


14. 甲酸燃料电池与传统氢气燃料电池相比,更容易储存和运输,如图是研究甲酸燃料电池性能装置,两电极之间用阳离子交换膜隔开,下列说法错误的是

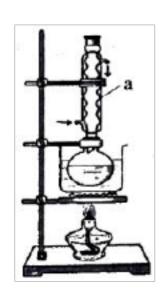
- A. 电池工作时, 电流由 a 电极经外电路流向 b 电极
- B. 负极的电极反应式为 $HCOO- + 2OH- 2e- = HCO_{\frac{1}{3}} + H_{2}O$
- C. 放电时, 1molHCOOH 转化为KHCO₃时,消耗 1molO₂
- D. 理论上每消耗 1molO_2 ,有4 molK+通过阳离子交换膜


三、填空题

- 15. 唐朝初年,瘟疫频发,人们把它归因于一种叫"年"的怪兽。一位叫李田的人就把硝石、硫磺和木炭装在竹筒里,点燃后驱赶怪兽。后来人们靠此驱散了山林瘴气,战胜了疫情。中国古代四大发明之一的"黑火药"是由"一硫二硝三木炭"混合而成。
- (1)写出"黑火药"爆炸的化学反应方程式____。
- (2)"黑火药"爆炸时,空气中还弥漫着一层淡淡的刺鼻的 SO_2 气体,它能在一定程度上,杀灭空气中的细菌。日常生产生活中,产生该气体的主要途径是_____(用文字表述,任写一条合理途径)。
- (3)古代曾用硝土[含有 $Ca(NO_3)_2$ 、少量 NaCl 等]和草木灰(含有 K_2CO_3)作原料制取 KNO_3 。某化学兴趣小组设计了如下实验流程:

- ①"反应"过程中的离子反应方程式为____。
- ②"过滤"操作必须用到的玻璃仪器有烧杯、玻璃棒和_____;
- ③如图所示是硝酸钾和氯化钠的溶解度曲线。"一系列操作"包括将滤液____、过滤洗涤、

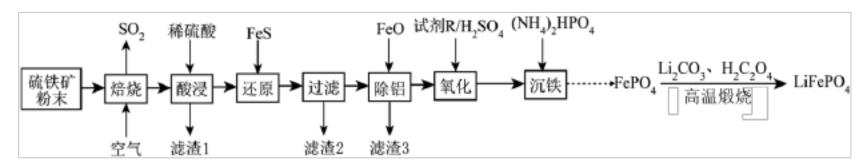
干燥等步骤。


(4)现代国防开矿等使用的烈性炸药,主要成分为硝化甘油 CH2—ONO2(C3H5O9N3), 它是

CH₂-ONO₂ CH-ONO₂

一种白色或淡黄色黏稠液体,低温易冻结。熔点 13℃,沸点 218℃(170℃以上会发生爆炸),密度是水的 1.6 倍。

①硝化甘油在人体内能缓慢分解出一种双原子明星分子,其相对分子量是 30,少量的该分子在人体内会促进血管扩张,防止血管栓塞,因此,被广泛用于治疗心绞痛,该明星分子的化学式为_____;


②实验室制备硝化甘油的化学方程式为 $C_3H_8O_3 + 3HNO_3 = C_3H_5O_9N_3 + 3H_2O$,用浓硝酸、浓硫酸和甘油混合加热到 85°C以上,即得到硝化甘油,制备装置如图所示。

该装置中仪器 a 名称为______,采用水浴加热而不用酒精灯直接加热的原因是_____,从 反应后混合溶液中分离硝化甘油的简单方法是_____。

四、工业流程题

16. 比亚迪采用磷酸亚铁锂技术的刀片电池,大幅度提高了电动汽车的续航里程。以硫铁矿 (主要成分是 FeS_2 ,含少量 Al_2O_3 、 SiO_2 和 Fe_3O_4)为原料制备 $LiFePO_4$ 的流程如下:

已知几种金属离子沉淀的 pH 如表所示:

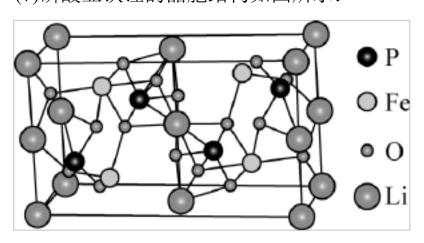
金属氢氧化物	Fe(OH) ₃	Fe(OH) ₂	Al(OH) ₃
开始沉淀的 pH	2.3	7.5	4.0
完全沉淀的 pH	4.1	9.7	5.2

请回答下列问题:

(1)SO,分子的空间结构为_____形。基态 Fe 原子的电子排布式为____。

(2)"还原"反应的离子方程式为____。

(3)"试剂 R"是一种绿色氧化剂,其中心原子杂化方式为____。


(4)从平衡的角度解析加 FeO"除铝"的原因(结合离子方程式说明)____。

(5)常温下, $K_{ap}(\text{FePO}_4) = 1.3 \times 10^{-22}$,"沉铁"中为了使 $c(\text{Fe}^3) \leq 1 \times 10^{-5} \text{mol} \cdot \text{L}^{-1}$, $c(\text{PO}_4^3)$

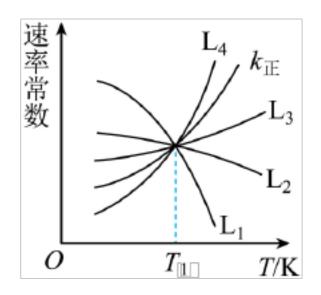
最小为_____mol·L 1。

(6)流程中在"高温煅烧"条件下,由 $FePO_4$ 制备 $LiFePO_4$ 的化学方程式为: _____。

(7)磷酸亚铁锂的晶胞结构如图所示:

长方体晶胞的长和宽均为 apm,高为 bpm, N_A 为阿伏加德罗常数,晶体密度为_____g/cm³。

五、原理综合题

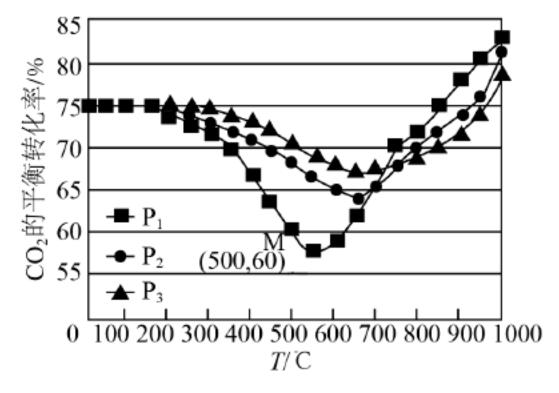

17. 2022年10月16日,党的二十大报告将"人与自然和谐共生"作为中国式现代的重要特征。请回答下列问题:

(1)在催化剂的作用下 CO_2 和 H_2 发生反应 i 生产甲醇,同时有副反应 ii 发生。

己知: $i.CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g) \Delta H_1 = -49.4 kJ \cdot mol^{-1}$

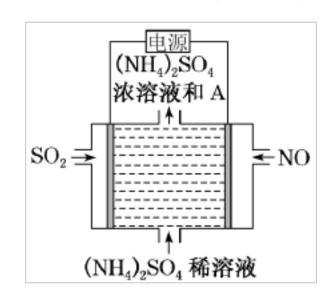
ii. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g) \Delta H_2 = +41.2 \text{kJ} \cdot \text{mol}_{-1}$

则 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = _____;$


②对于上述反应体系,下列说法错误的是____(填选项字母);

A. 增大CO₂的浓度,反应 i、ii 的正反应速率均增加

B. 恒容密闭容器中, 当气体密度不变时, 反应达到平衡


C. 加入催化剂, H₂的平衡转化率不变

③不同条件下,按照 $n(CO_2)$: $n(H_2) = 1$: 3投料, CO_2 的平衡转化率如下图所示,压强 P_1 、 P_2 、 P_3 由大到小的顺序是______; 当压强为 P_1 时,温度高于 570°C之后,随着温度升高 CO_2 平衡转化率增大的原因是_____。

(2)可用如图装置将雾霾中的NO、 SO_2 转化为 $(NH_4)_2SO_4$,则阴极的电极反应式为______,

物质 A 是____。(填化学式)。

(3)利用 CO_2 制取甲醛可以缓解温室效应,反应方程式为 $CO_2(g) + 2H_2(g) \rightleftharpoons HCHO(g) + <math>H_2O(g)$ 。 T_1 °C时,将体积比为 1:2 的 CO_2 和 H_2 混合气体充入恒容密闭容器中,每隔一定时间测得容器内气体压强如下表所示,请回答下列问题:

时间/min	0	10	20	30	40	50	60
压强/kPa	1.08	0.96	0.88	0.82	0.80	0.80	0.80

①已知: $\nu p(B) = \frac{\Delta p(B)}{\Delta t}$ 。前 10min,用 H_2 的压强变化表示该反应的平均反应速率为

____kPa·min-1;

② T_1 °C时,反应的平衡常数 $K_p = ____k$ Pa $_1(K_p)$ 用各气体分压表示的平衡常数,分压= 总压×物质的量分数;结果保留三位有效数字)。

六、有机推断题

18. 黄酮类天然产物具有独特的生物活性,一种具有抗炎活性的高异黄酮类似物VII的合成路线如下:

- (1)化合物 I 的名称是____。
- (2)鉴别化合物 I 和II的化学方法____。
- (3)反应⑤的类型是______; 反应②为还原反应,化合物III的结构简式为______; 由化合物III合成III的反应条件是_____(填选项字母)。

A. NaOH B. HCl C. O_2 D. $H+/H_2$
(4)写出反应④的反应方程式。
(5)化合物VII中含氧官能团名称。
(6)化合物II的芳香族同分异构体中,写出两种同时满足如下条件的同分异构体的结构简式
o
条件:①遇FeCl ₃ 溶液显色;②不能与NaHCO ₃ 溶液反应;③与稀硫酸反应后得到的芳香族产
物仅有一种含氧官能团; ④核磁共振氢谱有 4 组峰面积之比为 3:2:2:1 的吸收峰。
(7)利用反应⑤类似的反应,写出由HOCH ₂ (CH ₂) ₄ CH ₂ OH及乙醇为原料合成 cooc₂н₅的
路线(不需注明反应条件)。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/52716512112
5006034