

Building a MicroBlaze System Using the EDK

Introduction

This lab will illustrate the Embedded Development Kit (EDK) flow. The lab design is partially
completed. You will complete the MHS file, C application code, and linker script. You will also
correct an application code error.

Objectives

After completing this lab, you will be able to:
• Design a hardware processor system including the MicroBlaze™ soft processor core and the

associated IP
• Design a software application used to exercise the processor system
• Modify the software application and quickly update the hardware bit file using Data2BRAM
• Debug the software application using GNU Debugger (GDB) and Xilinx Microprocessor

Debugger (XMD)

Design Description

When designing any embedded processor system you need the following items:

• Required hardware
• Memory map of the system
• And the software application

This EDK lab example consists of the following hardware:

 MicroBlaze soft processor core
 LMB Bus

 LMB_LMB_BRAM_IF_CNTLR
 BRAM_BLOCK

 OPB BUS
 OPB_GPIO
 OPB_BRAM_IF_CNTLR
 OPB BRAM
 OPB_UARTLITE

Figure 3-1. Design Layout.

Below is the memory map for this design

Device Address Size Comment Min Max
LMB_BRAM 0x0000_0000 0x0000_1FFF 16kB LMB Memory
OPB_GPIO 0xFFFF_4200 0xFFFF_42FF 256B DIP Switch Input
OPB_GPIO 0xFFFF_4100 0xFFFF_41FF 256B LED Output
OPB UARTLITE 0xFFFF 4000 0xFFFF 40FF 256B Serial Output
OPB_BRAM 0xFFFF_0000 0xFFFF_3FFF 16kB OPB Memory

The provided lab files are incomplete. Through the course of the lab, you will complete the MHS file, the
linker script, and the software application.

Procedure

This lab comprises four primary sections: you will create the MicroBlaze system hardware
platform, build the application software for the MicroBlaze system, download the bitstream to the
FPGA, and finally debug the application software. Below each general instruction for a given
procedure, you will find accompanying step-by-step directions and illustrated figures providing
more detail for performing the general instruction. If you feel confident about a specific
instruction, feel free to skip the step-by-step directions and move on to the next general instruction
in the procedure.

LMB_LMB_BR
AM_IF_CNTLR

LMB BRAM

MB

OPB_GPIO

OPB_GPIO

OPB_UART

LITE

OPB_BRAM
_IF_CNTLR

OPB BRAM

OPB Bus

ILMB Bus

DLMB Bus

I. Creating the MicroBlaze System Hardware Platform

Create an XPS Project Step 1

The Xilinx Platform Studio allows you to control the hardware and software
development. It also provides an editor and a project management interface to
create and edit source code. The XPS offers software tool flow configuration
options. XPS also creates a Project Navigator project allowing you control of the
hardware implementation flow in a familiar environment.

XPS supports the creation of the MSS file (Microprocessor Software
Specification), the MVS file (Microprocessor Verification Specification), and
software tool flows associated with this software specification. It supports
customization of software libraries, drivers, interrupt handlers and the compilation
of the user program using the EDK default Linker Script or by providing a
Custom one.

 Open XPS: StartProgramsXilinx Embedded Development KitXilinx Platform

Studio

 In XPS, select FileNew Project

Create New Project dialog box opens as shown in figure 3-2.

Figure 3-2. Create new Project dialog box.

 Use the Project File Browse button to browse to the C:\training\microblaze\labs\mainlab
folder. Click Open to create the system.xmp file, as shown in figure 3-3

Figure 3-3. XPS Project Files Directory.

 Use the MHS File to import Browse button to select your system.mhs file

 Select the system.mhs file and click Open as shown in figure 3-4

Figure 3-4. Adding the MHS file to the XPS Project.

 Set the Target Device to the following:

 Architecture: Virtex2
 Device Size: xc2v1000
 Package: fg456
 Speed Grade: -4

 Click OK to create the project

Hardware Entry: ADD IP Step 2

The Microprocessor Hardware Specification (MHS) file defines the hardware
component of the design. An MHS file defines the configuration of the embedded
processor system, and includes the following:

• Bus architecture
• Peripherals
• Processor
• Connectivity of the system
• Interrupt request priorities
• Address space

In this design, the lmb_lmb_bram_if_cntlr with the associated BRAM and the
OPB UART have not been included in the MHS file. You will need to add this IP
to finish the hardware design. XPS provides a utility to easily add the peripheral
definition to a new or existing MHS file. The user is then required to specify the
correct parameters and port connections.

 Double click on system.mhs in XPS to open it

 Examine the mhs file. Notice the section headers for the missing IP

 Close the system.mhs file

 Select ProjectAdd Cores to open the Cores List dialog. (see figure 3-5)

Figure 3-5.

 Select the opb_uartlite_v1_00_b and click Add to MHS

 Select the lmb_lmb_bram_if_cntlr_v1_00_a and click Add to MHS

 Select the bram_block_v1_00_a and click Add to MHS

 Click the “x” to close the Cores List dialog

Connect and configure IP.

 Double click on system.mhs in XPS to open it

 Move each of the peripherals to the appropriate place

 Properly configure the C_BASEADDR and C_HIGHADDR for the lmb_lmb_bram_if_cntlr

and the opb_uartlite using the MEMORY MAP table

 Complete the lmb_lmb_bram_if_cntrl to match the following:

BEGIN lmb_lmb_bram_if_cntlr

 # Generics for vhdl or parameters for verilog
 PARAMETER INSTANCE = inst_lmb_lmb_bram_if_cntlr
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_MASK = 0x00800000
 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x00001fff

 # Global ports
 PORT LMB_Clk = sys_clk

 # Bus Interfaces
 BUS_INTERFACE ILMB = i_lmb
 BUS_INTERFACE DLMB = d_lmb
 BUS_INTERFACE PORTA = lmb_porta
 BUS_INTERFACE PORTB = lmb_portb
END

The BUS_INTERFACE ILMB = i_lmb connects the slave i_lmb bus to the MB peripheral.
The BUS_INTERFACE PORTA = lmb_porta connects the BRAM to this controller.

 Complete the bram_clock for use by the lmb_lmb_bram_if_cntlr to match the following:

BEGIN bram_block
PARAMETER INSTANCE = bram1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = lmb_porta
BUS_INTERFACE PORTB = lmb_portb

 END

You can see that the lmb_porta is used as the bus interfac ween the bram_block and the
lmb_lmb_bram_if_cntlr block.

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/52811604513

7006114

https://d.book118.com/528116045137006114
https://d.book118.com/528116045137006114

