学考专题 07 三角函数与三角恒等变换

1. 角的定义

平面内一条射线绕着端点从一位置旋转到另一个位置所形成的的图形叫做角;射线的端点叫做角的顶点,旋转开始时的射线叫做角的始边,旋转终止时的射线叫做角的终边

2. 角的分类

按照角终边的位置可分为 (象限角和轴线角)

按照选择方向可分为(正角(逆时针选择)、负角(顺时针选择)和零角(不旋转))

3. 象限角

第 I 象限角:
$$\{\alpha|360^{\circ}k < \alpha < 90^{\circ} + 360^{\circ}k\}$$
, $(k \in Z)$ 或 $\{\alpha|2k\pi < \alpha < \frac{\pi}{2} + 2k\pi\}$, $(k \in Z)$

第 II 象限角:
$$\left\{\alpha \left| \frac{\pi}{2} + 2k\pi < \alpha < \pi + 2k\pi \right.\right\}, (k \in \mathbb{Z})$$

第Ⅲ象限角:
$$\left\{ \alpha \middle| \pi + 2k\pi < \alpha < \frac{3\pi}{2} + 2k\pi \right\}$$
, $(k \in \mathbb{Z})$

第IV象限角:
$$\left\{ \alpha \left| \frac{3\pi}{2} + 2k\pi < \alpha < 2\pi + 2k\pi \right. \right\}$$
, $(k \in \mathbb{Z})$

或
$$\left\{\alpha \left| -\frac{\pi}{2} + 2k\pi < \alpha < 2k\pi \right.\right\}$$
, $(k \in \mathbb{Z})$

4. 轴线角

终边落在x轴正半轴上: $\{\alpha | \alpha = 2k\pi\}$, $(k \in \mathbb{Z})$

终边落在x轴负半轴上: $\{\alpha | \alpha = -\pi + 2k\pi\}$, $(k \in \mathbb{Z})$

终边落在
$$y$$
轴正半轴上: $\left\{\alpha \middle| \alpha = \frac{\pi}{2} + 2k\pi\right\}$, $(k \in \mathbb{Z})$

终边落在y轴负半轴上: $\left\{ \alpha \middle| \alpha = -\frac{3}{2}\pi + 2k\pi \right\}$, $(k \in \mathbb{Z})$

终边落在
$$x$$
轴上: $\left\{\alpha \middle| \alpha = k\pi\right\}$, $\left(k \in Z\right)$, 终边落在 y 轴上: $\left\{\alpha \middle| \alpha = \frac{\pi}{2} + k\pi\right\}$, $\left(k \in Z\right)$

终边落在坐标轴上:
$$\left\{\alpha \middle| \alpha = \frac{k\pi}{2}\right\}$$
, $(k \in Z)$, 终边落在 $y = x$ 上: $\left\{\alpha \middle| \alpha = \frac{\pi}{4} + k\pi\right\}$, $(k \in Z)$

终边落在
$$y = -x$$
 上: $\left\{ \alpha \middle| \alpha = \frac{3\pi}{4} + k\pi \right\}$, $(k \in \mathbb{Z})$ 或: $\left\{ \alpha \middle| \alpha = -\frac{\pi}{4} + k\pi \right\}$, $(k \in \mathbb{Z})$

5. 终边相同的角

与 α 终边相同的角的集合为: $\{\beta | \beta = \alpha + 2k\pi \}$, $(k \in \mathbb{Z})$

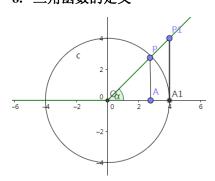
6. 角度与弧度的关系

$$\pi = 180^{\circ}$$
, $1rad = 57.3^{\circ} = 57^{\circ}18'$

7. 扇形的弧长、周长及面积公式

	角度制	弧度制	
弧长公式	$l = \frac{n\pi r}{180^{\circ}}$	$l = \alpha r$	
面积公式	$s = \frac{n\pi r^2}{360^{\circ}}$	$s = \frac{1}{2}rl = \frac{1}{2} \alpha r^2$	
周长公式	C = l + 2r		
	r是扇形的半径, n 是圆心角的度数	r是扇形的半径, $lpha$ 是圆心角弧度数, l 是弧长	

8. 三角函数的定义



$$\sin \alpha = \frac{\overline{\gamma}\overline{\partial}}{\overline{A}} = \frac{PA}{OP} = \frac{y}{r} = y$$
,正弦线: AP

$$\cos \alpha = \frac{\text{邻边}}{\text{斜边}} = \frac{OA}{OP} = \frac{x}{r} = x$$
,余弦线: OA

$$\tan \alpha = \frac{\overline{\overline{\gamma}}}{\overline{\overline{\gamma}}} = \frac{AP}{OA} = \frac{\overline{y}}{x} = \frac{A_1P_1}{OA_1}$$
,正切线: A_1P_1

9. 三角函数在各象限内的符号

$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
+ + + × - ×	y - + o + x	y - + - x + -

10. 特殊角的三角函数值

度	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
弧度	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	不存在	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	不存在	0

11. 两角互余的三角函数关系

$$\alpha$$
, β 互余, $\sin \alpha = \cos \beta$, $\cos \alpha = \sin \beta$

已知
$$\sin(-\alpha + \frac{\pi}{6}) = \frac{2}{3}$$
,则: $\cos(\alpha + \frac{\pi}{3}) = \frac{2}{3}$

12. 两角互补的三角函数关系

$$\alpha, \beta \equiv \uparrow \uparrow$$
, $\sin \alpha = \sin \beta$, $\cos \alpha = -\cos \beta$, $\tan \alpha = -\tan \beta$

已知
$$\sin(-\alpha + \frac{\pi}{6}) = \frac{2}{3}$$
,则: $\sin(\alpha + \frac{5\pi}{6}) = \frac{2}{3}$, $\cos(-\alpha + \frac{2\pi}{3}) = -\frac{2}{3}$

13. 三角混合不等式

 $\sin x < x < \tan x , \quad x \in (0, +\infty)$

14. 同角三角函数的基本关系

平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$

商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

推导公式:
$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

考点: 弦切互化

已知
$$\tan \alpha = 2$$
 求 $\frac{4\sin \alpha + 5\cos \alpha}{3\sin \alpha - 4\cos \alpha} =$

解: 同时除以
$$\cos \alpha$$
 得:
$$\frac{4\sin \alpha + 5\cos \alpha}{3\sin \alpha - 4\cos \alpha} = \frac{4\tan \alpha + 5}{3\tan \alpha - 4} = \frac{4 \times 2 + 5}{3 \times 2 - 4} = \frac{13}{2}$$

解:
$$9\sin^2\alpha + 4\sin\alpha\cos\alpha = \frac{9\sin^2\alpha + 4\sin\alpha\cos\alpha}{1} = \frac{9\sin^2\alpha + 4\sin\alpha\cos\alpha}{\sin^2\alpha + \cos^2\alpha}$$

同时除以
$$\cos^2 \alpha$$
 得: $\frac{9 \tan^2 \alpha + 4 \tan \alpha}{\tan^2 \alpha + 1} = \frac{9 \times 2^2 + 4 \times 2}{2^2 + 1} = \frac{44}{5}$

15. 诱导公式

(1) 诱导类型

$$\sin(\alpha \pm 90^{\circ} k)$$
 或 $\sin(\alpha \pm \frac{\pi}{2} k)$, $(k \in Z)$,

$$\cos(\alpha \pm 90^{\circ} k)$$
 $\gcd\cos(\alpha \pm \frac{\pi}{2} k)$, $(k \in Z)$,

$$\tan(\alpha \pm 90^{\circ} k)$$
 或 $\tan(\alpha \pm \frac{\pi}{2} k)$, $(k \in \mathbb{Z})$,

(2) 诱导方法: 奇变偶不变, 符号看象限

奇偶指的是 $90^{\circ} \cdot k$ 或 $\frac{\pi}{2} \cdot k$ 中 k 的奇偶,

若 k 为 奇 数 , 变 函 数 名 ; $\sin \alpha \leftrightarrow \cos \alpha$, $\tan \alpha \leftrightarrow \cot \alpha$

 $\exists k$ 为偶数,不变函数名; $\sin \alpha \leftrightarrow \sin \alpha$, $\cos \alpha \leftrightarrow \cos \alpha$, $\tan \alpha \leftrightarrow \tan \alpha$

象限指的是原函数名的象限, 再判断符号

规定:无论 α 角多大,看作第一象限角(锐角)

(3) 诱导公式

1.
$$\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha$$
 $\cos\left(\alpha + \frac{\pi}{2}\right) = -\sin\alpha$ $\tan\left(\alpha + \frac{\pi}{2}\right) = -\cot\alpha$

2.
$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos\alpha$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin\alpha$ $\tan\left(\alpha - \frac{\pi}{2}\right) = -\cot\alpha$

3.
$$\sin(\alpha + \pi) = -\sin \alpha$$
, $\cos(\alpha + \pi) = -\cos \alpha$, $\tan(\alpha + \pi) = \tan \alpha$

4.
$$\sin(\alpha - \pi) = \sin \alpha$$
, $\cos(\alpha - \pi) = -\cos \alpha$, $\tan(\alpha - \pi) = \tan \alpha$

$$5 \cdot \sin\left(\alpha + \frac{3\pi}{2}\right) = -\cos\alpha \cdot \cos\left(\alpha + \frac{3\pi}{2}\right) = \sin\alpha \cdot \tan\left(\alpha + \frac{3\pi}{2}\right) = -\cot\alpha$$

6.
$$\sin\left(\alpha - \frac{3\pi}{2}\right) = \cos\alpha \quad \cos\left(\alpha - \frac{3\pi}{2}\right) = -\sin\alpha \quad \tan\left(\alpha - \frac{3\pi}{2}\right) = -\cot\alpha$$

7.
$$\sin(\alpha + 2k\pi) = \sin \alpha$$
, $\cos(\alpha + 2k\pi) = \cos \alpha$, $\tan(\alpha + 2k\pi) = \tan \alpha$

8.
$$\sin(-\alpha) = -\sin \alpha$$
, $\cos(-\alpha) = \cos \alpha$, $\tan(-\alpha) = -\tan \alpha$

9.
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$

$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha \quad \cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha \quad \tan\left(\frac{3\pi}{2} - \alpha\right) = \cot\alpha$$

16. 三角函数的图象与性质

性	函数 $y = \sin x$	$y = \cos x$	$y = \tan x$
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
定			
义	R	R	$\left\{ x \middle x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z} \right\}$
域			,
值	[-1,1]	[-1,1]	R
域	[1,1]	[1,1]	Λ

17.三		当 $x = 2k\pi + \frac{\pi}{2}$ 时,	当 $x = 2k\pi$ 时,		角
函型	最	$y_{\text{max}} = 1; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$y_{\text{max}} = 1; \stackrel{\text{def}}{=} x = 2k\pi + \pi$	既无最大值也无最小值	数函
数	值	时, $y_{\min} = -1$.	时, $y_{\min} = -1$.		的
图	周	,			象
和	期	2π	2π	π	性
质	性				
(1)	奇				弦
型	偶	奇函数	偶函数	奇函数	函
数、 弦	性				余型
函		在 $\left[2k\pi-\frac{\pi}{2},2k\pi+\frac{\pi}{2}\right]$	在 $[2k\pi-\pi,2k\pi]$ 上是增函		数
性	単调	上是增函数;	数;	$ \pm \left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right) $	质
	性	在 $\left[2k\pi+\frac{\pi}{2},2k\pi+\frac{3\pi}{2}\right]$	在 $\left[2k\pi,2k\pi+\pi\right]$ 上是减函	上是增函数.	
		上是减函数.	数.		
	对	对称中心 $(k\pi,0)$	对称中心 $\left(k\pi+\frac{\pi}{2},0\right)$	对称中心 $\left(\frac{k\pi}{2},0\right)$	
	称性	对称轴 $x = k\pi + \frac{\pi}{2}$	对称轴 $x = k\pi$	无对称轴	

 $y = A\sin(\omega x + \varphi) + h$, $y = A\cos(\omega x + \varphi) + h$

A振幅,决定函数的值域,值域为 $\left[-A,A\right]$

$$\omega$$
 决定函数的周期, $T = \frac{2\pi}{|\omega|}$

 $\omega x + \varphi$ 叫做相位,其中 φ 叫做初相

(2) 正切型函数性质

$$y = A \tan(\omega x + \varphi) + h$$
 的周期公式为: $T = \frac{\pi}{|\omega|}$

18. 三角函数的伸缩平移变换

(1) 伸缩变换 (A, ω 是伸缩量)

$$y = A\sin(\omega x + \varphi) + h$$

A振幅,决定函数的值域,值域为[-A,A];

若A/,纵坐标伸长;若A \backslash ,纵坐标缩短; $\therefore A$ 与纵坐标的伸缩变换成正比

$$\omega$$
 决定函数的周期, $T = \frac{2\pi}{|\omega|}$

若 ω ノ,T\,横坐标缩短;若 ω \,Tノ,横坐标伸长; $\therefore \omega$ 与横坐标的伸缩变换成反比

(2) 平移变换 $(\varphi, h$ 是平移量)

平移法则: 左+右-, 上+下-

19. 正弦的和差公式

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

20. 余弦的和差公式

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

21. 正切的和差公式

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

22. 正弦的倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha \Rightarrow \sin \alpha \cos \alpha = \frac{1}{2}\sin 2\alpha$$

23. 余弦的倍角公式

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)$$

升幂公式:

$$\cos 2\alpha = 1 - 2\sin^2 \alpha$$
, $\cos 2\alpha = 2\cos^2 \alpha - 1$

降幂公式:

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}, \quad \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

24. 正切的倍角公式

$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$

25. 推导公式

$$(\sin\alpha + \cos\alpha)^2 + (\sin\alpha - \cos\alpha)^2 = 2$$

26. 辅助角公式

$$y = a \sin x + b \cos x, \quad (a > 0) \Rightarrow y = \sqrt{a^2 + b^2} \sin(x + \varphi), \quad \sharp + \tan \varphi = \frac{b}{a}, \quad \varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$$
$$y = a \sin x + b \cos x, \quad (a < 0) \Rightarrow y = \sqrt{a^2 + b^2} \cos(x + \varphi), \quad \sharp + \tan \varphi = -\frac{a}{b}, \quad \varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

一、单选题

- 1. (2023 秋·广东佛山·高三统考学业考试)下列各角中与60°终边相同的角是()
 - A. -300° B. -240° C. 120°
- D. 390°

【答案】A

【解析】根据终边相同的角的概念可得出合适的选项.

【详解】Q $-300^{\circ} = 60^{\circ} - 360^{\circ}$, $-240^{\circ} = 60^{\circ} - 300^{\circ}$, $120^{\circ} = 60^{\circ} + 60^{\circ}$, $390^{\circ} = 60^{\circ} + 330^{\circ}$,

因此,只有 A 选项中的角与60°终边相同.

故选: A.

- 2. (2023 秋·广东·高三统考学业考试)下列各角中与437°角的终边相同的是()
 - A. 67°
- B. 77°
- C. 107°
- D. 137°

【答案】B

【分析】写出与437°角的终边相同的角为 θ =437°+360°· $k,k \in \mathbb{Z}$, 选出正确答案.

【详解】与437°角的终边相同的角为 θ =437°+360°· $k,k \in \mathbb{Z}$,

当 k = -1 时, $\theta = 437^{\circ} - 360^{\circ} = 77^{\circ}$, B 正确;

经验证,其他三个选项均不合要求.

故选: B

3. (2023·广东·高三统考学业考试) cos 210° = ()

A.
$$\frac{\sqrt{3}}{2}$$

A.
$$\frac{\sqrt{3}}{2}$$
 B. $-\frac{\sqrt{3}}{2}$ C. $\frac{1}{2}$

C.
$$\frac{1}{2}$$

D.
$$-\frac{1}{2}$$

【答案】B

【解析】利用诱导公式化简求值即可.

【详解】
$$\cos 210^{\circ} = \cos (180^{\circ} + 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

故选: B

- 4. (2023 秋·广东·高三统考学业考试) sin 70° sin 40° sin 50° cos 110° = ()

- A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. $\frac{\sqrt{3}}{2}$

【答案】C

【分析】根据诱导公式以及两角和与差的余弦公式即可求解.

【详解】 $\sin 50^\circ = \sin(90^\circ - 40^\circ) = \cos 40^\circ$;

$$\cos 110^{\circ} = \cos(180^{\circ} - 70^{\circ}) = -\cos 70^{\circ}$$
;

∴ 原式 = $\sin 70^{\circ} \sin 40^{\circ} + \cos 40^{\circ} \cos 70^{\circ}$

$$=\cos(70^{\circ}-40^{\circ})=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$$
.

故选: C

- 5. (2023 秋·广东·高三统考学业考试) sin73°cos17°+cos73°sin17°= ()
 - A. 0
- B. $\frac{1}{2}$
- C. $\frac{\sqrt{3}}{2}$
- D. 1

【答案】D

【分析】直接利用两角和的正弦公式即可计算.

【详解】 $\sin 73^{\circ} \cos 17^{\circ} + \cos 73^{\circ} \sin 17^{\circ} = \sin (73^{\circ} + 17^{\circ}) = \sin 90^{\circ} = 1$.

故选: D

6. (2023·广东·高三统考学业考试)已知角 α 的顶点与原点重合,始边与 x 轴的非负半轴重合,终边经过 $P(1,\sqrt{3})$,则 $\tan \alpha$ 的值为 ()

- A. $\frac{\sqrt{3}}{2}$ B. $\frac{\sqrt{3}}{3}$
- C. $\frac{1}{2}$ D. $\sqrt{3}$

【答案】D

【分析】根据正切函数的定义计算.

【详解】由题意 $\tan \alpha = \frac{\sqrt{3}}{1} = \sqrt{3}$.

故选: D.

- 7. (2023·广东·高三统考学业考试) 要获得 $f(x) = \sin\left(x + \frac{1}{6}\right)$, 只需要将正弦图像 ()
 - A. 向左移动 $\frac{1}{6}$ 个单位
- B. 向右移动<mark>1</mark>个单位
- C. 向左移动 $\frac{\pi}{6}$ 个单位
- D. 向右移动 $\frac{\pi}{6}$ 个单位

【答案】A

【分析】根据三角函数图象变换的概念判断.

【详解】把 $y = \sin x$ 的图象向左平移 $\frac{1}{6}$ 个单位,所得图象的函数解析式为 $y = \sin(x + \frac{1}{6})$.

故选: A.

- 8. (2023·广东·高三学业考试)为了得到函数 $y = \sin 3x$ 的图象,只要把函数 $y = \sin \left(3x \frac{\pi}{7}\right)$ 的图象 ()
 - A. 向左平移 $\frac{\pi}{21}$ 个单位长度
- B. 向右平移 $\frac{\pi}{21}$ 个单位长度
- C. 向左平移 $\frac{\pi}{7}$ 个单位长度 D. 向右平移 $\frac{\pi}{7}$ 个单位长度

【答案】A

【分析】根据三角函数的平移变换规则计算可得.

【详解】因为 $y = \sin\left(3x - \frac{\pi}{7}\right) = \sin 3\left(x - \frac{\pi}{21}\right)$,

所以只需把函数 $y = \sin\left(3x - \frac{\pi}{7}\right)$ 的图象向左平移 $\frac{\pi}{21}$ 个单位长度,就可以得到函数 $y = \sin 3x$ 的图象.

故选: A

- 9. (2023·广东·高三学业考试)已知角 α 的始边在x轴的非负半轴上,终边经过点 $\left(-3,4\right)$,则 $\cos\alpha=($

- A. $\frac{4}{5}$ B. $\frac{3}{5}$ C. $-\frac{4}{5}$ D. $-\frac{3}{5}$

【答案】D

【分析】根据任意角的三角函数的定义求解.

【详解】由已知得, $\cos \alpha = \frac{-3}{\sqrt{(-3)^2 + 4^2}} = -\frac{3}{5}$

故选: D.

- 10. (2023·广东·高三统考学业考试)已知 $\cos \alpha = \frac{1}{3}, \quad \alpha \in \left(-\frac{\pi}{2}, 0\right), \quad \text{则 } \tan \alpha$ 等于 ()
- A. $-2\sqrt{2}$ B. $2\sqrt{2}$ C. $-\frac{\sqrt{2}}{4}$ D. $\frac{\sqrt{2}}{4}$

【答案】A

【分析】由已知 α 角的余弦值及所在象限求其正弦值,进而可求 $\tan \alpha$

【详解】由
$$\cos \alpha = \frac{1}{3}$$
, $\alpha \in \left(-\frac{\pi}{2}, 0\right)$,知: $\sin \alpha = -\frac{2\sqrt{2}}{3}$

$$\therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -2\sqrt{2}$$

故选: A

【点睛】本题考查了利用同角三角函数关系求正切值,根据角的余弦值及所在象限求正弦值,由同角正切 与正余弦关系求正切值

11. (2023·广东·高三学业考试)已知扇形的半径为1,圆心角为60°,则这个扇形的弧长为(

- A. $\frac{\pi}{c}$
- B. $\frac{\pi}{2}$ C. $\frac{2\pi}{2}$
- D. 60

【答案】B

【分析】根据扇形的弧长公式计算即可.

【详解】易知 $60^{\circ} = \frac{\pi}{3}$,由扇形弧长公式可得 $l = \frac{\pi}{3} \times 1 = \frac{\pi}{3}$

故选: B

12. (2023 秋·广东佛山·高三统考学业考试)关于函数 $y = \sin x(\sin x + \cos x)$ 描述正确的是 ()

A. 最小正周期是 2π

B. 最大值是 $\sqrt{2}$

C. 一条对称轴是 $x = \frac{\pi}{4}$

D. 一个对称中心是 $\left(\frac{\pi}{8},\frac{1}{2}\right)$

【答案】D

【分析】利用三角恒等变换化简*y* 得解析式,再利用正弦型函数的图像和性质得出结论.

【详解】解:由题意得:

 $Q y = \sin x (\sin x + \cos x)$

$$=\sin^2 x + \frac{1}{2}\sin 2x$$

$$=\frac{1-\cos 2x}{2}+\frac{1}{2}\sin 2x$$

$$=\frac{\sqrt{2}}{2}\sin(2x-\frac{\pi}{4})+\frac{1}{2}$$

选项 A: 函数的最小正周期为 $T_{\min} = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$, 故 A 错误;

选项 B: 由于 $-1 \le \sin(2x - \frac{\pi}{4}) \le 1$, 函数的最大值为 $\frac{\sqrt{2}}{2} + \frac{1}{2}$, 故 B 错误;

选项 C: 函数的对称轴满足 $2x - \frac{\pi}{4} = k\pi + \frac{\pi}{2}$, $x = \frac{k}{2}\pi + \frac{3\pi}{8}$, 当 $x = \frac{\pi}{4}$ 时, $k = -\frac{1}{4} \notin Z$, 故 C 错误;

确;

故选: D

13. (2023 秋·广东·高三统考学业考试) 已知 $\cos\theta = \frac{2}{3}$, 则 $\sin\left(2\theta + \frac{\pi}{2}\right) = ($

A. $-\frac{1}{0}$ B. $\frac{1}{0}$

C. $-\frac{8}{9}$ D. $\frac{8}{9}$

【答案】A

【分析】根据三角函数诱导公式和余弦二倍角公式即可计算求值.

【详解】 $\sin\left(2\theta + \frac{\pi}{2}\right) = \cos 2\theta = 2\cos^2 \theta - 1 = 2 \times \left(\frac{2}{3}\right)^2 - 1 = -\frac{1}{9}$.

故选: A.

14. (2023 秋·广东·高三统考学业考试)函数 $f(x) = \sin x + \sqrt{3} \cos x$ 的最大值为 ()

A. 1

B. 2

C. $1+\sqrt{3}$ D. $2\sqrt{3}$

【答案】B

【分析】根据辅助角公式化简即可求解.

【详解】 $f(x) = \sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right)$, 故最大值为 2

故选: B

15. $(2023 \cdot \Gamma \cdot \hat{\pi} \cdot \hat{a} = 2$,则 $\tan(\frac{\pi}{4} - a)$ 的值为(

A. $-\frac{1}{2}$ B. $\frac{1}{2}$

C. −3

D. 3

【答案】A

【分析】根据和差角的正切公式即得.

【详解】:: $\tan \alpha = 2$,

$$\therefore \tan(\frac{\pi}{4} - a) = \frac{\tan\frac{\pi}{4} - \tan\alpha}{1 + \tan\frac{\pi}{4}\tan\alpha} = \frac{1 - 2}{1 + 2} = -\frac{1}{3}.$$

故选: A.

16. (2023·广东·高三学业考试)将函数 $f(x) = \sin x$ 的图像向左平移 $\frac{\pi}{3}$ 个单位长度,再将所得图像上各点横 坐标变为原来的 $\frac{1}{2}$,纵坐标不变,得到函数g(x)的图像,则函数g(x)的解析式为()

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/535313322224011314