
Libxml Tutorial
John Fleck <jfleck@inkstain.net>

Copyright © 2002, 2003 John Fleck
Revision History

Revision 1 June 4, 2002
Initial draft

Revision 2 June 12, 2002
retrieving attribute value added

Revision 3 Aug. 31, 2002
freeing memory fix

Revision 4 Nov. 10, 2002
encoding discussion added

Revision 5 Dec. 15, 2002
more memory freeing changes

Revision 6 Jan. 26. 2003
add index

Revision 7 April 25, 2003
add compilation appendix

Revision 8 July 24, 2003
add XPath example

Revision 9 Feb. 14, 2004
Fix bug in XPath example

Revision 7 Aug. 24, 2004
Fix another bug in XPath example

Table of Contents
Introduction ... 2
Data Types .. 2
Parsing the file ... 3
Retrieving Element Content .. 3
Using XPath to Retrieve Element Content .. 4
Writing element content ... 6
Writing Attribute .. 6
Retrieving Attributes ... 7
Encoding Conversion ... 8
A. Compilation ... 9
B. Sample Document ... 9
C. Code for Keyword Example .. 9
D. Code for XPath Example .. 10
E. Code for Add Keyword Example .. 12
F. Code for Add Attribute Example .. 13
G. Code for Retrieving Attribute Value Example 14
H. Code for Encoding Conversion Example 15
I. Acknowledgements .. 16

Abstract

Libxml is a freely licensed C language library for handling XML, portable

1

across a large number of platforms. This tutorial provides examples of its basic
functions.

Introduction
Libxml is a C language library implementing functions for reading, creating and
manipulating XML data. This tutorial provides example code and explanations
of its basic functionality.

Libxml and more details about its use are available on the project home page.
Included there is complete API documentation. This tutorial is not meant to sub-
stitute for that complete documentation, but to illustrate the functions needed to
use the library to perform basic operations.

The tutorial is based on a simple XML application I use for articles I write. The
format includes metadata and the body of the article.

The example code in this tutorial demonstrates how to:

• Parse the document.

• Extract the text within a specified element.

• Add an element and its content.

• Add an attribute.

• Extract the value of an attribute.

Full code for the examples is included in the appendices.

Data Types
Libxml declares a number of data types we will encounter repeatedly, hiding the
messy stuff so you do not have to deal with it unless you have some specific
need.

xmlChar A basic replacement for char, a byte in a UTF-8
encoded string. If your data uses another encod-
ing, it must be converted to UTF-8 for use with
libxml's functions. More information on encoding
is available on the libxml encoding support web
page.

xmlDoc A structure containing the tree created by a parsed
doc. xmlDocPtr is a pointer to the structure.

xmlNodePtr and xml-
Node

A structure containing a single node. xmlNodePtr
is a pointer to the structure, and is used in travers-
ing the document tree.

Libxml Tutorial

2

Parsing the file
Parsing the file requires only the name of the file and a single function call, plus
error checking. Full code: Appendix C, Code for Keyword Example

¶ xmlDocPtr doc;
❷ xmlNodePtr cur;

❸ doc = xmlParseFile(docname);

❹ if (doc == NULL) {
fprintf(stderr,"Document not parsed successfully. \n");
return;

}

❺ cur = xmlDocGetRootElement(doc);

❻ if (cur == NULL) {
fprintf(stderr,"empty document\n");
xmlFreeDoc(doc);
return;

}

❼ if (xmlStrcmp(cur->name, (const xmlChar *) "story")) {
fprintf(stderr,"document of the wrong type, root node != story
xmlFreeDoc(doc);
return;

}

¶ Declare the pointer that will point to your parsed document.
❷ Declare a node pointer (you'll need this in order to interact with individual

nodes).
❹ Check to see that the document was successfully parsed. If it was not,

libxml will at this point register an error and stop.

Note
One common example of an error at this point is improper handling of
encoding. The XML standard requires documents stored with an encod-
ing other than UTF-8 or UTF-16 to contain an explicit declaration of
their encoding. If the declaration is there, libxml will automatically per-
form the necessary conversion to UTF-8 for you. More information on
XML's encoding requirements is contained in the standard.

❺ Retrieve the document's root element.
❻ Check to make sure the document actually contains something.
❼ In our case, we need to make sure the document is the right type. "story" is

the root type of the documents used in this tutorial.

Retrieving Element Content
Retrieving the content of an element involves traversing the document tree until
you find what you are looking for. In this case, we are looking for an element
called "keyword" contained within element called "story". The process to find
the node we are interested in involves tediously walking the tree. We assume

Libxml Tutorial

3

you already have an xmlDocPtr called doc and an xmlNodPtr called cur.

¶ cur = cur->xmlChildrenNode;
•while (cur != NULL) {

if ((!xmlStrcmp(cur->name, (const xmlChar *)"storyinfo"))){
parseStory (doc, cur);

}

cur = cur->next;
}

¶ Get the first child node of cur. At this point, cur points at the document
root, which is the element "story".

• This loop iterates through the elements that are children of "story", looking
for one called "storyinfo". That is the element that will contain the
"keywords" we are looking for. It uses the libxml string comparison func-
tion, xmlStrcmp. If there is a match, it calls the function parseStory.

void
parseStory (xmlDocPtr doc, xmlNodePtr cur) {

xmlChar *key;
¶ cur = cur->xmlChildrenNode;
• while (cur != NULL) {

if ((!xmlStrcmp(cur->name, (const xmlChar *)"keyword"))) {
‚ key = xmlNodeListGetString(doc, cur->xmlChildrenNode, 1);

printf("keyword: %s\n", key);
xmlFree(key);

}
cur = cur->next;
}

return;
}

¶ Again we get the first child node.
• Like the loop above, we then iterate through the nodes, looking for one that

matches the element we're interested in, in this case "keyword".
‚ When we find the "keyword" element, we need to print its contents. Re-

member that in XML, the text contained within an element is a child node
of that element, so we turn to cur->xmlChildrenNode. To retrieve it,
we use the function xmlNodeListGetString, which also takes the
doc pointer as an argument. In this case, we just print it out.

Note
Because xmlNodeListGetString allocates memory for the string
it returns, you must use xmlFree to free it.

Using XPath to Retrieve Element
Content

In addition to walking the document tree to find an element, Libxml2 includes

Libxml Tutorial

4

support for use of XPath expressions to retrieve sets of nodes that match a spe-
cified criteria. Full documentation of the XPath API is here.

XPath allows searching through a document for nodes that match specified cri-
teria. In the example below we search through a document for the contents of all
keyword elements.

Note
A full discussion of XPath is beyond the scope of this document. For
details on its use, see the XPath specification.

Full code for this example is at Appendix D, Code for XPath Example.

Using XPath requires setting up an xmlXPathContext and then supplying the
XPath expression and the context to the xmlXPathEvalExpression func-
tion. The function returns an xmlXPathObjectPtr, which includes the set of
nodes satisfying the XPath expression.

xmlXPathObjectPtr
getnodeset (xmlDocPtr doc, xmlChar *xpath){

¶ xmlXPathContextPtr context;
xmlXPathObjectPtr result;

•context = xmlXPathNewContext(doc);
‚result = xmlXPathEvalExpression(xpath, context);
„if(xmlXPathNodeSetIsEmpty(result->nodesetval)){

xmlXPathFreeObject(result);
printf("No result\n");
return NULL;

¶ First we declare our variables.
• Initialize the context variable.
‚ Apply the XPath expression.
„ Check the result and free the memory allocated to result if no result is

found.

The xmlPathObjectPtr returned by the function contains a set of nodes and other
information needed to iterate through the set and act on the results. For this ex-
ample, our functions returns the xmlXPathObjectPtr. We use it to print the
contents of keyword nodes in our document. The node set object includes the
number of elements in the set (nodeNr) and an array of nodes (nodeTab):

¶ for (i=0; i < nodeset->nodeNr; i++) {
•keyword = xmlNodeListGetString(doc, nodeset->nodeTab[i]->xmlChildrenN

printf("keyword: %s\n", keyword);
xmlFree(keyword);

}

¶ The value of nodeset->Nr holds the number of elements in the node
set. Here we use it to iterate through the array.

• Here we print the contents of each of the nodes returned.

Libxml Tutorial

5

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/53811600606

2006105

https://d.book118.com/538116006062006105
https://d.book118.com/538116006062006105

