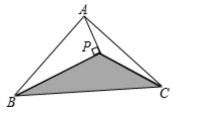

重难点 10 全等三角形中"雨伞"模型

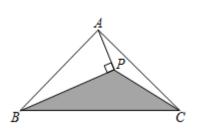
【知识梳理】



【考点剖析】

一. 选择题(共2小题)

1. (2022 秋•东港区校级期末)如图, $\triangle ABC$ 的面积为 $10cm^2$,AP 垂直 $\angle B$ 的平分线 BP 于 P,则 $\triangle PBC$ 的面积为(

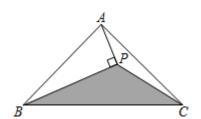


A. $4cm^2$

B. $5cm^2$

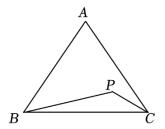
C. $6cm^2$ D. $7cm^2$

2. (2022 秋•常州期中) 如图, $\triangle ABC$ 的面积为 $12cm^2$,AP 垂直于 $\angle ABC$ 的平分线 BP 于 P,则 $\triangle PBC$ 的 面积为()

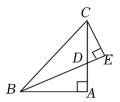

A. $9cm^2$

B. $8cm^2$

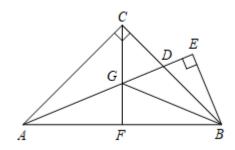
C. $6cm^2$ D. $5cm^2$


二. 填空题(共1小题)

3. (2022 秋•邗江区校级月考)如图, $\triangle ABC$ 的面积为 $8cm^2$,AP垂直 $\angle B$ 的平分线BP于点P,则 $\triangle PBC$ 的面积为 $__cm^2$.


三. 解答题

- 4. (2021 秋•荔城区校级期中) 如图, $\triangle ABC$ 中,AB=AC,点 P 在 $\triangle ABC$ 内连接 PB 和 PC,BP=AB.
 - (1) 若 $\angle BAC = 50^{\circ}$,且 $\angle PBC = \angle ACP$,求 $\angle BPC$ 的度数.
 - (2) 取 BC 的中点 D, 连接 AD 交 CP 延长线于点 M, 当 $\angle ABP = 2\angle ACP$ 时, 试判断 $\angle BAC$ 与 $\angle ABP$ 之 间的关系, 画出图形并说明理由.

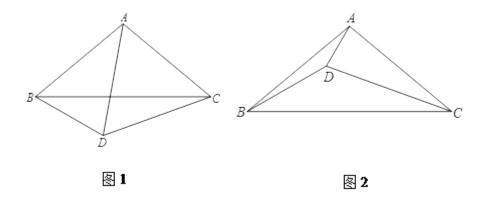


5. (2021 秋•滨湖区校级月考) 如图,已知在 $\triangle ABC$ 中, $\angle BAC$ =90°,AB=AC,BD 平分 $\angle ABC$,CE $\bot BD$ 交 BD 的延长线于点 E.


求证: $CE = \frac{1}{2}BD$.

- 6.(2023·浙江·八年级假期作业)如图,VABC中,AC=BC, $\angle ACB=90^\circ$,AD 平分 $\angle BAC$ 交 BC 于点 D,过点 B 作 $BE\bot AD$,交 AD 延长线于点 E,F 为 AB 的中点,连接 CF,交 AD 于点 G,连接 BG.
- (1) 线段 BE 与线段 AD 有何数量关系? 并说明理由;
- (2) 判断 VBEG 的形状, 并说明理由.

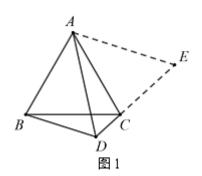
7. (2021·全国·九年级专题练习)如图 1,在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于 A(a,0),B(0,b) 两点,且 a,b 满足 $(a-b)^2+|a-4t|=0$,且 t>0, 是常数,直线 BD 平分 $\angle OBA$,交 x 轴于点 D.


- (1) 若 AB 的中点为 M, 连接 OM 交 BD 于点 N, 求证: ON = OD;
- (2) 如图 2, 过点 A 作 $AE \perp BD$, 垂足为 E, 猜想 AE = BD 间的数量关系,并证明你的猜想.

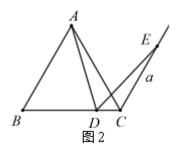
- 8.(2023 春·江西抚州·八年级统考期末)如图,在 Δ ABC 中,点 D 为边 BC 的中点,点 E 在 Δ ABC 内,AE 平分 Δ BAC,CE Δ ABC 点 F 在 AB Δ BC 由 BF=DE
- (1) 求证: 四边形 BDEF 是平行四边形
- (2) 线段 AB, BF, AC 之间具有怎样的数量关系?证明你所得到的结论

9.(2022 秋·八年级课时练习)已知,如图 $\triangle ABC$ 中, AB = AC , $\angle A = 90^\circ$, $\angle ACB$ 的平分线 CD 交 AB 于 点 E , $\angle BDC = 90^\circ$,

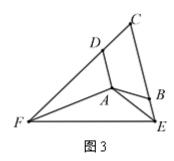
求证: CE = 2BD.


- 10.(2021 春·八年级课时练习)在 Δ ABC 中,AB=AC,将线段 AC 绕着点 C 逆时针旋转得到线段 CD,旋转角为 α ,且 0° < α < 180 $^{\circ}$,连接 AD、BD.
- (1) 如图 1,当 \angle BAC=100°, $\alpha = 60$ °时, \angle CBD 的大小为______;
- (2) 如图 2, 当 $\angle BAC=100^{\circ}$, $\alpha=20^{\circ}$ 时, 求 $\angle CBD$ 的大小;
- (3) 已知 \angle BAC 的大小为 m(60° < m < 120°),若 \angle CBD 的大小与(2)中的结果相同,请直接写出 α 的大小.

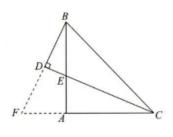
11. (江苏省无锡市宜兴市实验中学 2019-2020 学年八年级上学期期中数学试题)【初步探索】

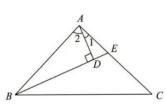

截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.

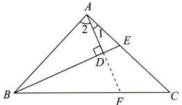
(1) 如图 1, $\triangle ABC$ 是等边三角形,点 D 是边 BC 下方一点, $\triangle BDC$ =120°,探索线段 DA、DB、DC 之间的数量关系;

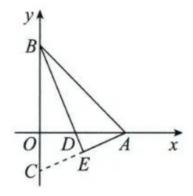

【灵活运用】

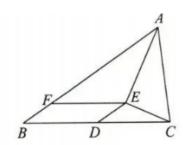
(2) 如图 2, $\triangle ABC$ 为等边三角形,直线 $a \parallel AB$,D 为 BC 边上一点, $\triangle ADE$ 交直线 a 于点 E,且 $\triangle ADE$ = 60°. 求证: CD+CE=CA;

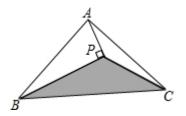

【延伸拓展】


(3)如图 3,在四边形 ABCD 中, $\angle ABC+\angle ADC=180^\circ$,AB=AD.若点 E 在 CB 的延长线上,点 F 在 CD 的延长线上,满足 EF=BE+FD,请直接写出 $\angle EAF$ 与 $\angle DAB$ 的数量关系.



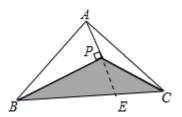

重难点 10 全等三角形中"雨伞"模型


【知识梳理】



【考点剖析】

一. 选择题(共2小题)


1. (2022 秋•东港区校级期末)如图, $\triangle ABC$ 的面积为 $10cm^2$,AP 垂直 $\angle B$ 的平分线 BP 于 P,则 $\triangle PBC$ 的面积为(

A. $4cm^2$

B. $5cm^2$ C. $6cm^2$ D. $7cm^2$

【解答】解: 延长 AP 交 BC 于 E,

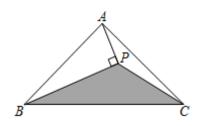
:AP 垂直 $\angle B$ 的平分线 BP 于 P,

 $\angle ABP = \angle EBP$,

又知 BP=BP, $\angle APB=\angle BPE=90^{\circ}$,

 $\therefore \triangle ABP \cong \triangle BEP$,

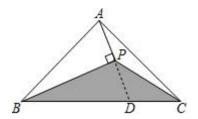
 $S_{\triangle ABP} = S_{\triangle BEP}, AP = PE,$


∴ △APC 和△CPE 等底同高,

 $:S_{\triangle APC}=S_{\triangle PCE},$

 $\therefore S_{\triangle PBC} = S_{\triangle PBE} + S_{\triangle PCE} = \frac{1}{2} S_{\triangle ABC} = 5cm^2,$

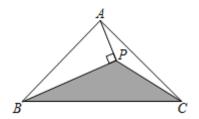
故选: B.


2. (2022 秋•常州期中) 如图, $\triangle ABC$ 的面积为 $12cm^2$,AP 垂直于 $\angle ABC$ 的平分线 BP 于 P,则 $\triangle PBC$ 的 面积为()

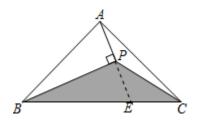
A. $9cm^2$

B. $8cm^2$ C. $6cm^2$ D. $5cm^2$

【解答】解: 延长 AP 交 BC 于点 D,



- ∵BP 平分∠ABD,
- $\therefore \angle ABP = \angle DBP$,
- $BP \perp AP$,
- $\therefore \angle BPA = \angle BPD = 90^{\circ}$,
- BP = BP,
- $\therefore \triangle BAP \cong \triangle BDP \ (ASA),$
- $\therefore AP = PD$,
- ∴ $\triangle ABP$ 的面积 = $\triangle BDP$ 的面积, $\triangle APC$ 的面积 = $\triangle DPC$ 的面积,
- $:: \triangle ABC$ 的面积为 $12cm^2$,
- ∴ $\triangle PBC$ 的面积= $\triangle BPD$ 的面积+ $\triangle DCP$ 的面积
- $=\frac{1}{2}\triangle ABC$ 的面积
- $=\frac{1}{2}\times 12$
- $=6 (cm^2),$


故选: C.

二. 填空题(共1小题)

3.(2022 秋•邗江区校级月考)如图, $\triangle ABC$ 的面积为 $8cm^2$,AP 垂直 $\angle B$ 的平分线 BP 于点 P,则 $\triangle PBC$ 的面积为 cm^2 .

【解答】解: 延长 AP 交 BC 于 E,

::AP 垂直 $\angle B$ 的平分线 BP 于 P,

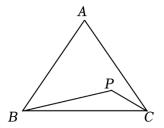
 $\angle ABP = \angle EBP$,

又知 BP=BP, $\angle APB=\angle BPE=90^{\circ}$,

 $\therefore \triangle ABP \cong \triangle BEP$

 $S_{\triangle ABP} = S_{\triangle BEP}, AP = PE,$

 $\therefore \triangle APC$ 和 $\triangle CPE$ 等底同高,


 $S_{\triangle APC} = S_{\triangle PCE}$,

 $\therefore S_{\triangle PBC} = S_{\triangle PBE} + S_{\triangle PCE} = \frac{1}{2} S_{\triangle ABC} = 4cm^2,$

故答案为: 4.

三. 解答题

- 4. (2021 秋•荔城区校级期中) 如图, $\triangle ABC$ 中,AB=AC,点 P 在 $\triangle ABC$ 内连接 PB 和 PC,BP=AB.
 - (1) 若 $\angle BAC = 50^{\circ}$,且 $\angle PBC = \angle ACP$,求 $\angle BPC$ 的度数.
 - (2)取 BC 的中点 D,连接 AD 交 CP 延长线于点 M,当 $\angle ABP = 2\angle ACP$ 时,试判断 $\angle BAC$ 与 $\angle ABP$ 之间的关系,画出图形并说明理由.

【解答】解: (1) :AB=AC, $\angle BAC=50^{\circ}$,

$$\therefore \angle ABC = \angle ACB = \frac{1}{2} (180^{\circ} - \angle BAC) = \frac{1}{2} (180^{\circ} - 50^{\circ}) = 65^{\circ}$$
,

 $\therefore \angle PBC = \angle ACP$,

 \mathbb{X} : $\angle APB = \angle ABC - \angle PBC$, $\angle PCB = \angle ACB - \angle ACP$,

 $\therefore \angle APB = \angle PCB$,

 $\therefore \angle BPC = 180^{\circ} - (\angle PBC + \angle PCB) = 180^{\circ} - (\angle PBC + \angle APB) = 180^{\circ} - \angle ABC$

```
=180^{\circ} - 65^{\circ} = 115^{\circ};
(2) \angle BAC + \angle ABP = 120^{\circ},
理由: 过点 A 作底边 BC 的中线 AD, 连接 BM, 画图如下,
AB = AC
∴AD 是\angle BAC 的平分线,AD \bot BC,
\therefore BM = CM
:点M在底边BC的中线上,
∴点 M 在 \angle BAC 的平分线 AD 上,
即 AM 平分 ∠BAC,
\therefore \angle CAM = \angle BAM = \beta,
在\triangle ABM 和\triangle ACM 中,
 (AB=AC)
 \angle AMB = \angle AMC
\AM=AM
\therefore \triangle ABM \cong \triangle ACM \ (SAS),
\therefore \angle ACM = \angle ABM = \alpha,
\therefore \angle ABP = 2 \angle ACP = 2 \angle ACM = 2\alpha, \angle ABP = \angle ABM + \angle PBM = \alpha + \angle PBM = 2\alpha,
\therefore \angle ABM = \angle PBM = \alpha,
在\triangle ABM和\triangle PBM中,
\therefore \triangle ABM \cong \triangle PBM \ (SAS),
\therefore \angle AMB = \angle PMB,
在\triangle ABM中,\angle BMA = \alpha + \beta,
在\triangle ACM中,\angle CMD=\alpha+\beta,
由\angle AMB = \angle PMB 得: 180^{\circ} - \alpha - \beta = 2 (\alpha + \beta),
\therefore \alpha + \beta = 60^{\circ},
则\angle BAC+\angle ABP=2\alpha+2\beta=120^{\circ}.
```

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载 或阅读全文,请访问: https://d.book118.com/547121056012006156