Functional-Dependency Theory

- We now consider the formal theory that tells us which functional dependencies are implied logically by a given set of functional dependencies.
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF and higher normal form.

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - For e.g.: If $A \to B$ and $B \to C$, then we can infer that $A \to C$
- The set of all functional dependencies logically implied by F is the closure of F, we denote the closure of F by F⁺.

Closure of a Set of Functional Dependencies

- We can find F^{+,} the closure of F, by repeatedly applying
 - **Armstrong's Axioms:**
 - if $\subseteq \alpha$, then $\alpha \rightarrow$ (reflexivity 自反律)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation 增广律)
 - if $\alpha \rightarrow$, and $\rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity 传递律)
- These rules are
 - sound (do not generate any incorrect functional dependencies)
 - complete (generate all functional dependencies that hold).

• R = (A, B, C, G, H, I) $F = \{ A \rightarrow B \}$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H$ \bullet some members of F^+ $\bullet A \rightarrow H$, by transitivity from $A \rightarrow B$ and $B \rightarrow H$ $\bullet AG \rightarrow I$ by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$ • $CG \rightarrow HI$ by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Procedure for Computing F⁺

To compute the closure of a set of functional dependencies F:
 F + = F

repeat

for each functional dependency f in F^+ apply reflexivity and augmentation rules on fadd the resulting functional dependencies to $F^$ for each pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity then add the resulting functional dependency to F^+ until F^+ does not change any further

NOTE: We shall see an alternative procedure for this task later

Closure of Functional Dependencies (Cont.)

Additional rules:

- If $\alpha \rightarrow$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds (union)
- If $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow -$ holds and $\alpha \rightarrow \gamma$ holds (decomposition)
- If $\alpha \rightarrow \text{ holds and } \gamma \rightarrow \delta \text{ holds, then } \alpha \gamma \rightarrow \delta \text{ holds}$ (pseudotransitivity)
- The above rules can be inferred from Armstrong's axioms.

◆ Example: 已知关系模式R中 U={A, B, C, D, E, G}, F={AB→C, C→A, BC→D, ACD→B, D→EG, BE→C, CG→BD, CE→AG}, 判断BD→AC是否为F逻辑蕴含

◆解:由D→EG知D→E, BD→BE …①
又知BE→C, C→A所以BE→A, BE→AC …
(2)
由①、②知, BD→AC, 所以BD→AC被F所蕴
涵

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/55514424300</u> <u>3011121</u>