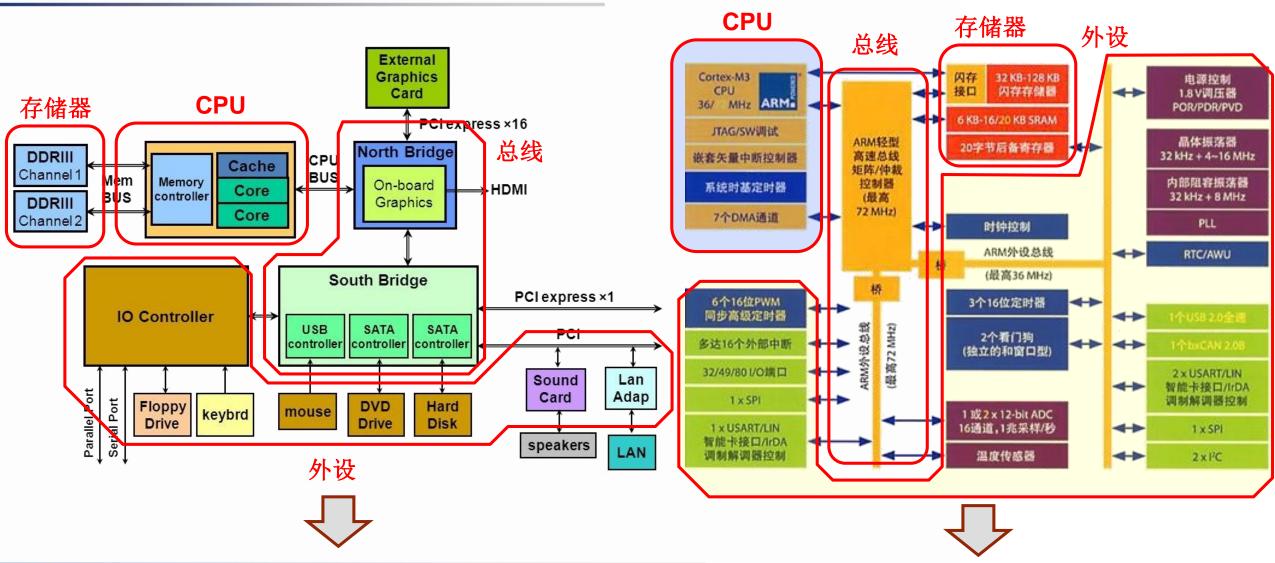


微控制器体系结构基础


赵翔

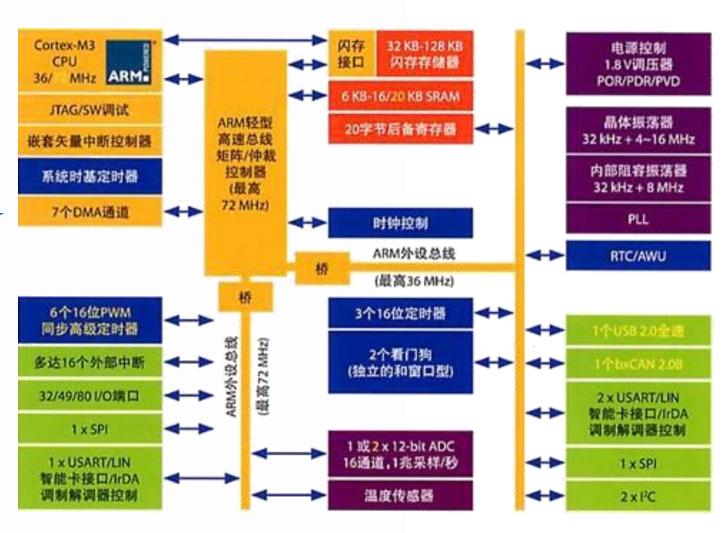
xiangzh@bjtu.edu.cn

微控制器与PC

国家电工电子实验教学中心

大学生创新活动中心

微控制器与PC


对京交通大学 BEIJING JIAOTONG UNIVERSITY

微控制器结构

- ▲ 处理器
- → 存储器
- → 总线
 - 计算机各种功能部件之间传送信息的公共通信干线
- → 外设
 - AD, Timer…
 - ₩接口

≠IO、外部总线等

→ 时钟控制器 (时钟树)

大学生创新活动中心

+CPU位宽

♣ CPU位宽

- 按照执行指令的数据带宽定义
- 位宽同指令集、寻址空间、寄存器功能等直接相关

位宽	8位	16位	32位
数据总线宽度	8位/16位 16位		32位
ALU宽度	8位	16位	32位
指令	最多8位/256种	最多16位	最多32位
寻址空间	理论256B	64kB	4G
常见型号	51、AVR	MSP430、AVR	ARM(STM32)

♯CPU位宽

▲ 寻址空间

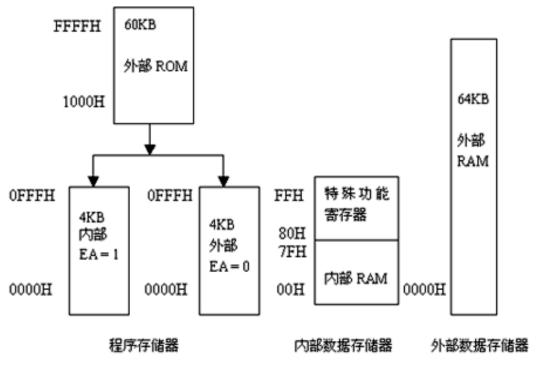


图 1 MCS-51 机的内存结构

		MSP430G2153 MSP430G2113
内存	尺寸	1kB
主:中断矢量	闪存	0xFFFF 至 0xFFC0
主:代码内存	闪存	0xFFFF 至 0xFC00
信息内存	尺寸	256 字节
	闪存	010FFh 至 01000h
RAM	尺寸	256 字节
		0x02FF 至 0x0200
外设	16 位	01FFh 至 0100h
	8 位	0FFh 至 010h
	8位 SFR	0Fh 至 00h

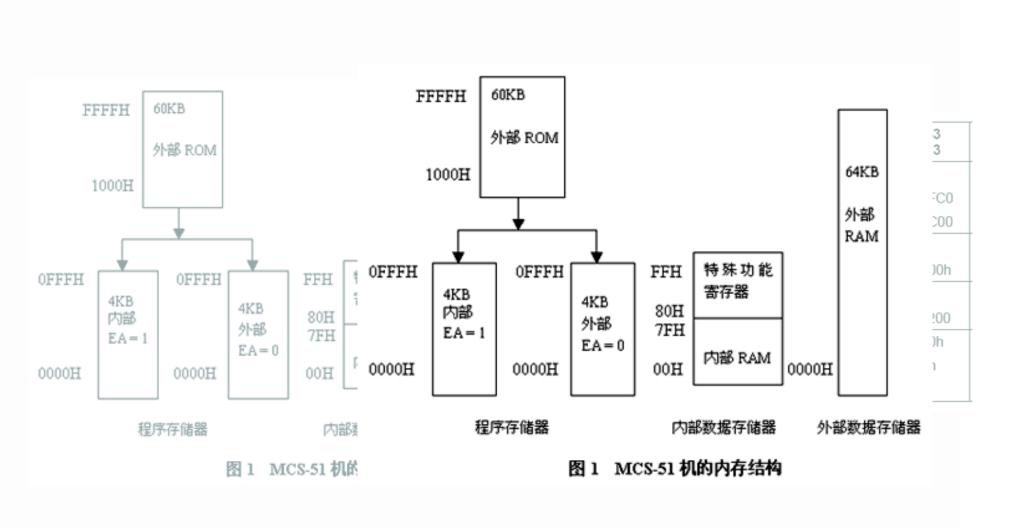

0xFFFF_FFFF	Debug/Trace Peripherals
0xE000_0000	
0xDFFF_FFFF	Unused
0xC000_0000	
0xBFFF_FFFF	Unused
0xA000_0000	
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF	Unused
0x6000_0000	
0x5FFF_FFFF 0x4000_0000	Peripherals
0x3FFF_FFFF	
0x2000_0000	SRAM
0x1FFF_FFFF	
0.0000 0000	Code
0x0000_0000	

图 6-1. Device Memory Zones

↓CPU位宽

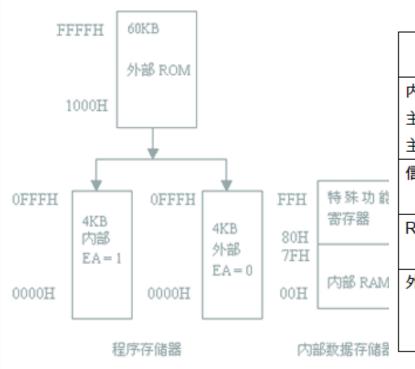

0xFFFF_FFFF 0xE000_0000	Debug/Trace Peripherals
0xDFFF_FFFF	Unused
0xC000_0000	
0xBFFF_FFFF	Unused
0xA000_0000	
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF	Unused
0x6000_0000	Onused
0x5FFF_FFFF	Peripherals
0x4000_0000	
0x3FFF_FFFF	SRAM
0x2000_0000	
0x1FFF_FFFF	Code
0x0000_0000	

图 6-1. Device Memory Zones

↓CPU位宽

			_
		MSP430G2153 MSP430G2113	P430G2153 P430G2113
内存	尺寸	1kB	1kB
主:中断矢量	闪存	0xFFFF 至 0xFFC0	FF 至 0xFFC0
主:代码内存	闪存	0xFFFF 至 0xFC00	FF 至 0xFC00
信息内存	尺寸	256 字节	256 字节
	闪存	010FFh 至 01000h	Fh 至 01000h
RAM	尺寸	256 字节	-256 字节 FF 至 0x0200
		0x02FF 至 0x0200	Fh 至 0100h
外设	16 位	01FFh 至 0100h	Fh 至 010h
	8 位	0FFh 至 010h	Fh 至 00h
	8位 SFR	0Fh 至 00h	

图 1 MCS-51 机的内存结构

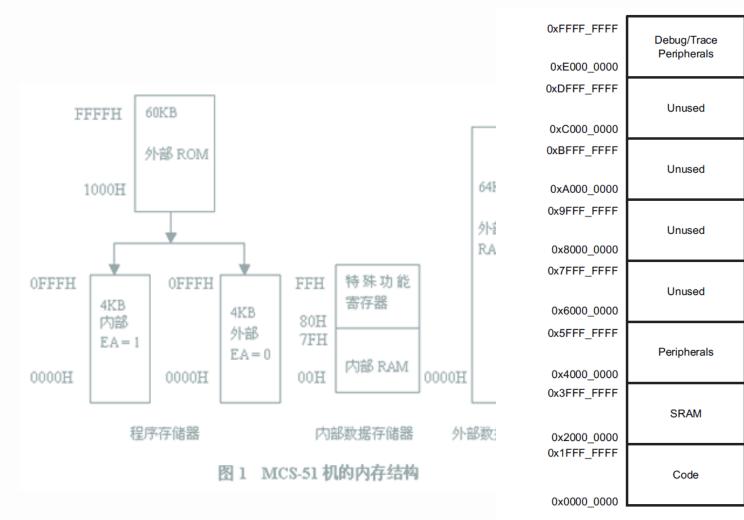

0xFFFF_FFFF	Debug/Trace Peripherals
0xE000_0000	
0xDFFF_FFFF	Unused
0xC000_0000	
0xBFFF_FFFF	Unused
0xA000_0000	
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF	Unused
0x6000_0000	
0x5FFF_FFFF 0x4000 0000	Peripherals
0x3FFF FFFF	
0x2000_0000	SRAM
0x1FFF_FFFF	Code
0x0000_0000	

图 6-1. Device Memory Zones

↓CPU位宽

	MSP430G2153 MSP430G2113
尺寸	1kB
闪存	0xFFFF 至 0xFFC0
闪存	0xFFFF 至 0xFC00
尺寸	256 字节
闪存	010FFh 至 01000h
尺寸	256 字节
	0x02FF 至 0x0200
16 位	01FFh 至 0100h
8 位	0FFh 至 010h
SFR	0Fh 至 00h

	0
0xFFFF_FFFF 0xE000 0000	Debug/Trace Peripherals
=	
0xDFFF_FFFF	Unused
0xC000_0000	
0xBFFF_FFFF	Unused
0xA000_0000	
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF	Unused
0x6000_0000	
0x5FFF_FFFF	Peripherals
0x4000_0000	
0x3FFF_FFFF	SRAM
0x2000_0000	
0x1FFF_FFFF	Code
0x0000_0000	

图 6-1. Device Memory Zones

♯CPU位宽

▲ 寻址空间

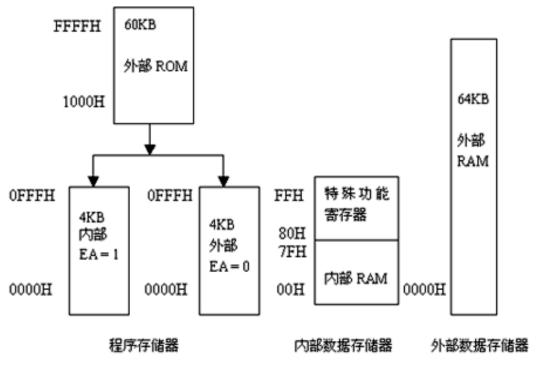


图 1 MCS-51 机的内存结构

		MSP430G2153 MSP430G2113
内存	尺寸	1kB
主:中断矢量	闪存	0xFFFF 至 0xFFC0
主:代码内存	闪存	0xFFFF 至 0xFC00
信息内存	尺寸	256 字节
	闪存	010FFh 至 01000h
RAM	尺寸	256 字节
		0x02FF 至 0x0200
外设	16 位	01FFh 至 0100h
	8 位	0FFh 至 010h
	8位 SFR	0Fh 至 00h

0xFFFF_FFFF	Debug/Trace Peripherals
0xE000_0000	
0xDFFF_FFFF	Unused
0xC000_0000	
0xBFFF_FFFF	Unused
0xA000_0000	
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF	Unused
0x6000_0000	
0x5FFF_FFFF 0x4000_0000	Peripherals
0x3FFF_FFFF	
0x2000_0000	SRAM
0x1FFF_FFFF	
0.0000 0000	Code
0x0000_0000	

图 6-1. Device Memory Zones

→ 寻址空间

表 5-2 TCON——定时器控制寄存器的位分配(地址 0x88、可位寻址)

位	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
复位值	0	0	0	0	0	0	0	0

表 5-4 TMOD--定时器模式寄存器的位分配(地址 0x89、不可位寻址)

	位	7	6	5	4	3	2	1	0
	符号	GATE	C/T	t MI:/	/ b M0 g.	GATE	⊕ C/T	M1	M0
		(T1)	(T1)	(T1)	(T1)	(T0)	(T0)	(T0)	(T0)

Table 84. TIM1&TIM8 register map and reset values

Offset	Register	31		30	2 8	0	17	56	25	24		3	22	21	96	2 0		\$ 1	4	16	15	14	13	12	#	10	6	80	7	9	40	4		m	2	,	0
0x00	TIMx_CR1												F	Resi	en	red												KD :0]	ARPE		MS :0]	DIR	Mac		- 1	UDIS	CEN
	Reset value														0	0	0	0	0	0	1	_	0	0	0												
0x04	TIMx_CR2									R	ese	erve	ed								OIS3 OIS3 OIS2N OIS2				OIS 1N	OIS1	TI1S	М	MS]	[2:0	0000	200	ccus	served	CCPC		
	Reset value							0	0	0	0	0	0	0	0	0	0	0	1	0	0	ê.	0														
0x08	TIMx_SMCR									Res	en	ved	i								ETP S ETF				[3:0	[3:0] WSW			TS[2:0]			SWS o		IS[2	:0]		
	Reset value																				0	0	0	0	0	0	0	0	0	0	0	0	à	Ž	0	0	0
0x0C	TIMx_DIER									R	ese	erve	ed									TDE	COMDE	CC4DE	CC3DE	CC2DE	CC1DE	NDE	BIE	TE	COMIE	004IE	TIE CO	200	OCZIE	OC11E	OIE
	Reset value														0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0							
0x10	TIMx_SR	Reserved										CC40F	CC3OF	CC2OF	CC10F	Reserved	BIF	TIF	COMIF	COAIF	TISO C	3	CC2IF	CC11F	UIF												
1	Reset value												0	0	0	0	æ	0	0	0	0	1	0	0	0	0											
0x14	TIMx_EGR	Reserved															BG	TG	COMG	004G				0016	ne												
	Reset value																			_		_			_				0	0	0	0	_	_	0	0	0
	TIMx_CCMR1 Output Compare mode	Rese						Reserved				OC2CE		C2 [2:0		OC2PE	OC2FE	1 :	C2 S :0]	OC1CE		OC1 [2:0		0040	100	OC1FE	00 [1:	3									
0x18	Reset value																				0	0	0	0	0	ᆫ	_	0	0	0	0	0	_		0	0	ш
	TIMx_CCMR1 Input Capture mode									Res	en	ved	i								ı	C2F	[3:	0]	P	02 SC I:0]	1	C2 S :0]		IC1I	F[3:	0]		PS [1:	C	(1:	8
	Reset value											0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0									
	TIMx_CCMR2 Output Compare mode	Reserved								ved				024 CE)C4 [2:0		OC4 PE	OC4FE		C4 S :0]	OC3CE		OC3 [2:0		OCSDE	3	OC3FE	C(5 [1:	6							
0x1C	Reset value																				0	0	0	0	0	0	_	0	0	0	0	0	_		0	0	Щ.
	TIMx_CCMR2 Input Capture mode Reset value	Reserved											IC4F[3:0] PSC [1:0]				CC4 S [1:0]			IC3F[3:0]				IC PS [1:	С	[1:	6										
0x20	TIMx_CCER										Re	ser	rve	d									CC4P	CC4E	CC3NP	CC3NE	CC3P	CC3E	CC2NP	CC2NE	CC2P	CC2E	ON CO	2	CC1NE	CC1P	CC1E
	Reset value														0	0	0	0	0	0	0	0	0	0		0	0	0	0								

表 5-1 的寄存器是存储定时器的计数值的。TH0/TL0 用于 T0, TH1/TL1 用于 T1。

表 5-1 定时值存储寄存器

名称	描述	SFR 地址	复位值
TH0	定时器 0 高字节	0x8C	0x00
TL0	定时器0低字节	0x8A	0x00
TH1	定时器1高字节	0x8D	0x00
TL1	定时器1低字节	0x8B	0x00

表 5-2 TCON——定时器控制寄存器的位分配(地址 0x88、可位寻址)

位	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
复位值	0	0	0	0	0	0	0	0

表 5-3 TCON——定时器控制寄存器的位描述

		7
位	符号	描述
7	TF1	定时器 1 溢出标志。一旦定时器 1 发生溢出时硬件置 1。清零有两种方式:
		软件清零,或者进入定时器中断时硬件清零。
6	TR1	定时器1运行控制位。软件置位/清零来进行启动/停止定时器。
5	TF0	定时器 0 溢出标志。一旦定时器 0 发生溢出时硬件置 1。清零有两种方式:
		软件清零,或者进入定时器中断时硬件清零。
4	TR0	定时器 0 运行控制位。软件置位/清零来进行启动/停止定时器。
3	IE1	
2	IT1	外部中断部分,与定时器无关,暂且不看。
1	IE0	
0	IT0	

CPU位宽

表 5-5 TMOD--定时器模式寄存器的位描述

符号	描述
T1/T0	在表 5-5 中,标 T1 的表示控制定时器 1 的位,标 T0 的表示控制定时器 0
11/10	的位。
	该位被置1时为门控位。仅当'INTx'脚为高并且'TRx'控制位被置1时使能
CATE	定时器'x',定时器开始计时,当该位被清0时,只要'TRx'位被置1,定时
GATE	器 x 就使能开始计时,不受到单片机引脚'INTx'外部信号的干扰,常用来测
	量外部信号脉冲宽度。这是定时器一个额外功能,本节课暂不介绍。
C/T	定时器或计数器选择位。该位被清零时用作定时器功能(内部系统时钟),
C/1	被置1用作计数器功能。//blog.csdn.net/

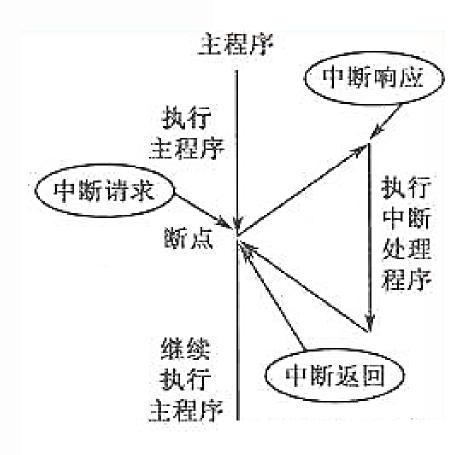
表 5-6 TMOD--定时器模式寄存器 M1/M0 工作模式

Ml	M0	工作模式	描述
0	0	0	兼容 8048 单片机的 13 位定时器, THn 的 8 位和 TLn 的 5 位组
	_		成一个13位定时器。
0	1	1	THn 和 TLn 组成一个 16 位的定时器。
1	0	2	8 位自动重装模式,定时器溢出后 THn 重装到 TLn 中。
1	1	3	禁用定时器 1, 定时器 0 变成 2 个 8 位定时器。

↓CPU位宽

+CPU位宽

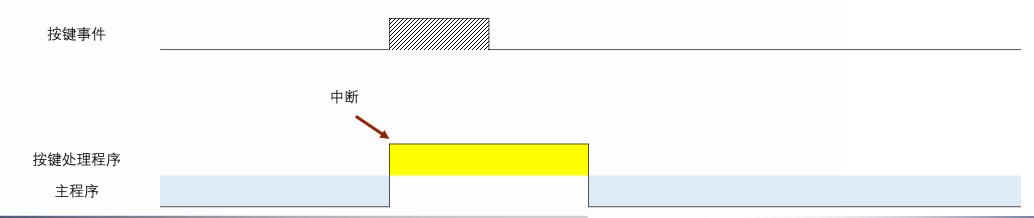
2	高级控制	制定时器(TIM1 和TIM8)	157
	12.1 TIM	1和TIM8简介	157
	12.2 TIM	1和TIM8主要特性	157
	12.3 TIM	1和TIM8功能描述	158
	12.3.1	时基单元	158
	12.3.2	计数器模式	160
	12.3.3	重复计数器	167
	12.3.4	时钟选择	168
	12.3.5	捕获/比较通道	171
	12.3.6	输入捕获模式	173
	12.3.7	PWM输入模式	174
	12.3.8	强置输出模式	174
	12.3.9	输出比较模式	175
	12.3.10	PWM模式	176
	12.3.11		178
	12.3.12		179
	12.3.13		180
	12.3.14	,	181
	12.3.15		182
	12.3.16	777	183
	12.3.17		185
	12.3.18		185
	12.3.19		187
	12.3.20	7 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	190
	12.3.21	调试模式	190


I2.4 TIM1₹	和TIM8寄存器描述	191
12.4.1	控制寄存器1(TIMx_CR1)	191
12.4.2	控制寄存器2(TIMx_CR2)	192
12.4.3	从模式控制寄存器(TIMx_SMCR)	193
12.4.4	DMA/中断使能寄存器(TIMx_DIER)	195
12.4.5	状态寄存器(TIMx_SR)	196
12.4.6	事件产生寄存器(TIMx_EGR)	197
12.4.7	捕获/比较模式寄存器1(TIMx_CCMR1)	198
12.4.8	捕获/比较模式寄存器2(TIMx_CCMR2)	200
12.4.9	捕获/比较使能寄存器(TIMx_CCER)	202
12.4.10	计数器(TIMx_CNT)	203
12.4.11	预分频器(TIMx_PSC)	204
12.4.12	自动重装载寄存器(TIMx_ARR)	204
12.4.13	重复计数寄存器(TIMx_RCR)	204
12.4.14	捕获/比较寄存器1(TIMx_CCR1)	205
12.4.15	捕获/比较寄存器2(TIMx_CCR2)	205
12.4.16	捕获/比较寄存器3(TIMx_CCR3)	205
12.4.17	捕获/比较寄存器(TIMx_CCR4)	206
12.4.18	刹车和死区寄存器(TIMx_BDTR)	206
12.4.19	DMA控制寄存器(TIMx_DCR)	208
12.4.20	连续模式的DMA地址(TIMx_DMAR)	208

中新

→ 中断

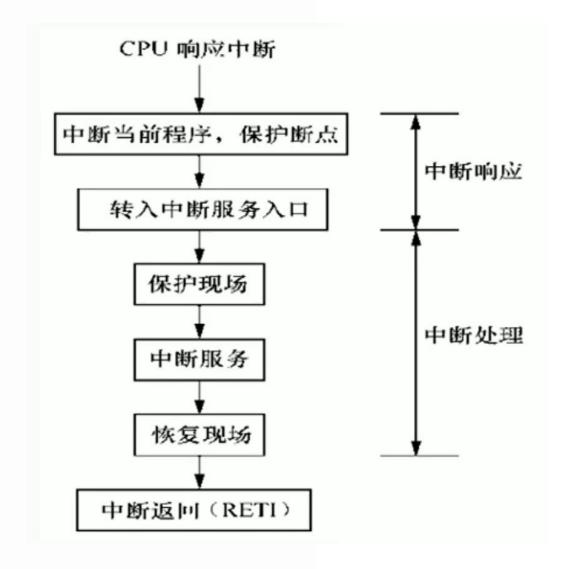

- 当CPU正在处理内部数据时,外界发生了紧急情况,要求CPU暂停当前的工作转去处理这个异步事件。处理完后,再回到原来被中断的地址,继续原来的工作。
- 中断发生后执行的程序称为中断服务程序。
- 申请CPU中断的请求源称为中断源。



中新

→ 不使用中断的情景-同步事件

▲ 使用中断的情景-异步事件


CHILDE CHILDE

→ 中断过程

- 响应中断
- 跳转
- 保护现场
- 执行中断服务
- 恢复现场
- 中断返回

中断

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/55522234301 4011302