Partial Differential Equations and Waves

Lecture 7: 1D Wave Equation (Part 3) and Water Waves

Prof. Constantin Coussios *Email: constantin.coussios@eng.ox.ac.uk* (with thanks to Dr Julia Schnabel)

Hilary 2016

Before we plunge into the water... ...let's have a second look at waves

- We continue our previous lecture on waves by considering:
 - Lossy (dispersive) waves
 - Evanescent waves
 - Amplitude modulation

• Let us consider a damped (or lossy) wave, whose amplitude decays as the wave propagates:

Complex wave number

• This leads to a decaying waveform:

$$\psi(x,t) = A(x) e^{j(\omega t - kx)} = A e^{-lx} e^{j(\omega t - kx)}$$
$$= A e^{j(\omega t - (k - jl)x)} = A e^{j(\omega t - \kappa x)}$$

• This means that, for a lossy wave, the wave number becomes complex:

$$\kappa = (k - jl)$$

Example: 1D string in a viscous fluid

- We introduced the wave equation by studying the 1D string.
- We now re-visit the string, but this time place it in a viscous medium so that it loses energy to the medium.
- This causes damped vibrations, familiar to you from the first year.

Damped wave equation

Re-doing the analysis that led to the wave equation, the equilibrium equation becomes:

$$\mu \Delta x \frac{\partial^2 \psi}{\partial t^2} = T \Delta x \frac{\partial^2 \psi}{\partial x^2} - \beta \frac{\partial \psi}{\partial t} \Delta x,$$
 Damping term

where the term $\beta \frac{\partial \psi}{\partial t}$ corresponds to viscous damping

- and β denotes the resistance per unit length.
- This we can rearrange to find:

$$\frac{\partial^2 \psi}{\partial t^2} + \frac{\beta}{\mu} \frac{\partial \psi}{\partial t} = \frac{T}{\mu} \frac{\partial^2 \psi}{\partial x^2} \quad \text{or} \quad \frac{\partial^2 \psi}{\partial t^2} + \frac{\beta}{\mu} \frac{\partial \psi}{\partial t} = c^2 \frac{\partial^2 \psi}{\partial x^2}$$

Or more generally:
$$\frac{\partial^2 \psi}{\partial t^2} + \Gamma \frac{\partial \psi}{\partial t} = c^2 \frac{\partial^2 \psi}{\partial x^2}$$

Dispersion relation for a damped wave

 Substituting into this equation the general solution for a forward travelling wave,

$$\psi(x,t) = A e^{j(\omega t - \kappa x)}$$

– (recalling that we now have a complex wave number κ)

- We obtain: $\psi_{t}(x,t) = j\omega\psi(x,t)$ $\frac{\partial^{2}\psi}{\partial t^{2}} + \Gamma \frac{\partial\psi}{\partial t} = c^{2} \frac{\partial^{2}\psi}{\partial x^{2}}$ $\psi_{tt}(x,t) = -\omega^{2}\psi(x,t)$ $\Rightarrow -\omega^{2}\psi + \Gamma j\omega\psi = -c^{2}\kappa^{2}\psi$ $\psi_{xx}(x,t) = -\kappa^{2}\psi(x,t)$
- From this we find a complex dispersion relation:

$$\omega^2 - \Gamma j \omega = c^2 \kappa^2$$

Analysing the dispersion relation

• We substitute the complex wave number $\kappa = (k - jl)$ into the dispersion relation:

$$\omega^2 - \Gamma j \omega = c^2 \kappa^2 \implies \omega^2 - j \Gamma \omega = c^2 \left(k^2 - l^2 - 2 j k l \right)$$

- Equating real and imaginary parts:

This allows us to find the loss factor:Substituting *l* into the real part:

$$\omega^2 = c^2 \left(k^2 - l^2 \right) \qquad \Gamma \omega = 2c^2 k l$$

$$l = \frac{\Gamma \omega}{2c^2 k} = \frac{1}{2k} \frac{\Gamma}{\omega} \left(\frac{\omega}{c}\right)^2$$

$$\omega^{2} = c^{2} \left(k^{2} - \left(\frac{1}{2k} \frac{\Gamma}{\omega} \left(\frac{\omega}{c} \right)^{2} \right)^{2} \right) \implies 0 = k^{4} - \left(\frac{\omega}{c} \right)^{2} k^{2} - \frac{1}{4} \left(\frac{\Gamma}{\omega} \right)^{2} \left(\frac{\omega}{c} \right)^{4}$$

- Finally yields:
$$k^{2} = \frac{1}{2} \left(\frac{\omega}{c} \right)^{2} \left[1 \pm \sqrt{1 + \left(\Gamma/\omega \right)^{2}} \right]$$

Extreme case: light damping

- For light damping, $\frac{\Gamma}{\omega} = \frac{\beta}{\mu} \frac{1}{\omega} \ll 1$, leading to: $k^2 = \frac{1}{2} \left(\frac{\omega}{c}\right)^2 \left[1 \pm \sqrt{1 + (\Gamma/\omega)^2}\right] \approx \left(\frac{\omega}{c}\right)^2 \Rightarrow k \approx \pm \frac{\omega}{c}$
- From which we recover the (now very small) loss factor:

$$l = \frac{\Gamma \omega}{2c^2 k} \approx \pm \frac{1}{2\omega/c} \frac{\Gamma}{\omega} \left(\frac{\omega}{c}\right)^2 = \pm \frac{\Gamma}{2c}$$

- Not surprisingly, the situation is almost that of an undamped wave: $\psi(x,t) = A e^{j(\omega t \kappa x)} \approx A e^{j(\omega t kx)}$
 - The only difference is that mild attenuation (decrease of amplitude with distance) occurs with an almost constant attenuation length of 1/|l|:

$$A(x) = Ae^{-lx} = Ae^{-\frac{\Gamma}{2c}x}$$

Extreme case: heavy damping

• Working from our derived dispersion relationships:

$l = \frac{\Gamma \omega}{2c^2 k} =$	$\frac{1}{2k} \left(\frac{\omega}{c}\right)^2 \frac{\Gamma}{\omega}$	$k^2 = \frac{1}{2} \left(\frac{\omega}{c}\right)^2 \left[1 \pm \sqrt{\frac{1}{2}}\right]^2$	$1 + \left(\frac{\Gamma}{\omega}\right)^2$
$\frac{1}{2} > 1$ so that			

• Heavy damping implies that $\frac{1}{\omega} >> 1$, so that: $k^2 \approx \pm \frac{1}{2} \left(\frac{\omega}{c}\right)^2 \frac{\Gamma}{\omega} \implies k^2 \approx k \left[\frac{1}{2k} \left(\frac{\omega}{c}\right)^2 \frac{\Gamma}{\omega}\right] = kl$ (we can drop the sign as $k^2 > 0$ and k and l always have the same sign)

Clearly, $k^2 \approx kl$ implies that $k \approx l$ from which follows that $\kappa \approx k - jk$

· The now heavily damped wave becomes:

$$\psi(x,t) = A e^{j(\omega t - \kappa x)} \approx A e^{j(\omega t - (k - jk)x)} = A e^{-kx} e^{j(\omega t - kx)}$$
- Now the attenuation becomes very large, with an attenuation length $1/|l| \propto 1/\sqrt{\omega}$

7.5

Group velocity: velocity of a wave group

- We know what the phase velocity is: $v_{\phi} = \frac{\omega}{L}$ - i.e. the rate at which the phase of the wave travels in space.
- We haven't yet introduced group velocity:
 - The group velocity of a wave is the velocity with which the overall shape of the wave's amplitudes (its envelope) travels.

- It is defined as:
$$v_g = \frac{d\omega}{dk}$$

- The function $\omega(k)$, which gives ω as a function of k, is known as the dispersion relation.
- If ω is directly proportional to k, e.g. $\omega = \pm ck \Rightarrow d\omega/dk = \pm c$ then the group velocity is exactly equal to the phase velocity, and the wave is non-disper
- Otherwise, the individual waves will travel at different speeds, and dispersion (smearing out) will take place.

Phase and group velocity for a vibrating string in a viscous fluid

- Recall the damped wave equation: $\frac{\partial^2 \psi}{\partial t^2} + \Gamma \frac{\partial \psi}{\partial t} = c^2 \frac{\partial^2 \psi}{\partial x^2}$ We use a complex wave number: $\kappa = k jl$
 - And the general dispersion relation: $\omega^2 j \Gamma \omega = c^2 \kappa^2$
 - Equating real parts of the dispersion relation: $\omega^2 = c^2 (k^2 l^2)$
- By definition, the phase velocity is given by:

$$v_{\phi} = \frac{\omega}{k} = \pm \frac{\sqrt{c^2 (k^2 - l^2)}}{k} = \pm c \sqrt{k}$$

 $1 - \left(\frac{l}{k}\right)^2$ (where k determines the sign and hence the direction)

We can find the group velocity by:

$$v_g = \frac{d\omega}{dk} = \frac{d}{dk} \left(\pm \sqrt{c^2 (k^2 - l^2)} \right) = \pm \frac{ck}{\sqrt{k^2 - l^2}} = \pm \frac{c^2 k}{\omega} = \pm \frac{c}{\sqrt{1 - (l/k)^2}}$$

From this we find the relation:
$$v_{\phi} v_g = c^2$$

From this we find the relation:

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/57601500310</u> 2010210