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Before we plunge into the water...
...let’'s have a second look at waves

» We continue our previous lecture on waves by
considering:

— Lossy (dispersive) waves
— Evanescent waves
— Amplitude modulation
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Lossy (damped) wave

» Let us consider a damped (or lossy) wave, whose
amplitude decays as the wave propagates:
A(x)=Ae™
— where [ is the “loss factor”
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Complex wave number

» This leads to a decaying waveform:
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w(x,t)=A(x) el Aot Il =)

:Aej(a)t—(k—jl)x):Aej(a)t—/oc)

» This means that, for a lossy wave, the wave number
becomes complex:

x = (k- jl)
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Example: 1D string in a viscous fluid

* We introduced the wave equation by studying the 1D

string.
We now re-visit the string, but this time place it in a
viscous medium so that it loses energy to the medium.

This causes damped vibrations, familiar to you from the
first year.
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Deflected string at fixed time t. Explanation on p. 539 Kreyszig

Damped wave equation

Re-doing the analysis that led to the wave equation, the
equilibrium equation becomes:
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where the term 8 o corresponds to viscous damping
t

and f3 denotes the resistance per unit length.
This we can rearrange to find:
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Or more generally: |9V, % _20¥
a*t ot ox?
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Dispersion relation for a damped wave

» Substituting into this equation the general solution for
a forward travelling wave,

l//(X,f)ZAej(wt_Kx)
— (recalling that we now have a complex wave number k)
+ We obtain:
82_¥/+Fa_l//—c2 é//

v, (x,0)=joy(x,1) or? ot ox?

W (x, 1) == @ p(x,1) = —0’y+T joy=—c*c’y

Wix (x,t)z—Kzl//(x,t)
« From this we find a complex dispersion relation:
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Analysing the dispersion relation

» We substitute the complex wave number « = (k— jl)into the
dispersion relation:

0 -T jo=cx* = a)z—jl“a):cz(kz—lz—2jkl)
— Equating real and imaginary parts:

w2=c2(k2—12) Tw=2c%kl

— This allows us to find the loss factor: I=—— zﬁ_ w
— Substituting / into the real part: 2¢k w\c
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Extreme case: light damping

* For light damping, r_sgt <<1, leading to:
w w
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* From which we recover the (now very small) loss factor:
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* Not surprisingly, the situation is almost that of an undamped wave:

w(x,t)=A /) o g Tl

— The only difference is that mild attenuation (decrease of amplitude with
distance) occurs with an almost constant attenuation length of 1/|1| :

r
A(x)=Ae™ = de 2¢

Extreme case: heavy damping

» Working from our derived dispersion relationships:
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* Heavy damping implies that ;>> 1, so that:

2 2 . 2
k2z+l(a)) r I 1 (a)) r y (we can drop the sign as £~ > 0 and
c/ o k and [ always have the same sign)

® 2k

Clearly, k* ~ kI implies that k ~ / from which follows that x ~ k — jk

* The now heavily damped wave becomes:

W(X,I)IAej(wt_Kx) ~ Aej(a)t—(k—jk)x)

— Now the attenuation becomes very large, with an attenuation length

Lo ke J(ot —kx)

1l o< 1/ve
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Group velocity: velocity of a wave group

o w
+ We know what the phase velocity is: |vy = »
— i.e. the rate at which the phase of the wave travels in space.

* We haven'’t yet introduced group velocity:
— The group velocity of a wave is the velocity with which the overall
shape of the wave’s amplitudes (its envelope) travels.
— ltis defined as: _dow
Vg =——
dk
— The function w(k), which gives w as a function of k, is known as
the dispersion relation.

— If wis directly proportional to k, e.g.@ = +ck = dw/dk = t¢then
the group velocity is exactly equal to the phase velocity, and the
wave is non-disper

— Otherwise, the individual waves will travel at different speeds, and
dispersion (smearing out) will take place.

Phase and group velocity for a vibrating string in

a viscous fluid
2

. oy
Recall the damped wave equation: —5+I'—=c"—

— We use a complex wave number: x =k— ji

— And the general dispersion relation: »’— ;T w=c’ x>

— Equating real parts of the dispersion relation: wzzcz(kz_lz)
+ By definition, the phase velocity is given by:

o_, N (2 =1%) N ’1 (1)2 (where k determines the sign
V¢ =—=rXr———"—=1IC — —
k k k

and hence the direction)

* We can find the group velocity by:

2
v, =@=i(¢r c2(k2—12)j=iL:iﬂ=i—c
dk dk k2_l2 1) 1-(1/1()2

¢ From this we find the relation: 2
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