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Before we plunge into the water…
…let’s have a second look at waves 

• We continue our previous lecture on waves by 
considering:
– Lossy (dispersive) waves
– Evanescent waves
– Amplitude modulation
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Lossy (damped) wave
• Let us consider a damped (or lossy) wave, whose 

amplitude decays as the wave propagates:
– where l is the “loss factor”

x

A(x) = Ae-lx

Y

Complex wave number
• This leads to a decaying waveform:

• This means that, for a lossy wave, the wave number 
becomes complex:

y(x, t)= A(x)e j wt - kx( ) = Ae-lx e j wt - kx( )
          = Ae j wt-(k- jl )x( ) = Ae j wt-kx( )

k = (k - jl)



7.3

Example: 1D string in a viscous fluid
• We introduced the wave equation by studying the 1D 

string.  
• We now re-visit the string, but this time place it in a 

viscous medium so that it loses energy to the medium.  
• This causes damped vibrations, familiar to you from the 

first year.

Kreyszig

Damped wave equation
• Re-doing the analysis that led to the wave equation, the 

equilibrium equation becomes:

• This we can rearrange to find:

• Or more generally: 
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Dispersion relation for a damped wave
• Substituting into this equation the general solution for 

a forward travelling wave, 
– (recalling that we now have a complex wave number k)

• We obtain:

• From this we find a complex dispersion relation:

y(x, t)= Ae j wt -kx( )

yt (x, t)= jwy (x, t)
ytt (x, t)=- w 2y (x, t)
yxx (x, t)=-k 2y (x, t)

Þ -w 2y + G jwy =- c2k 2y

w 2 - G jw =c2k 2
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¶t =c2 ¶2y
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Analysing the dispersion relation
• We substitute the complex wave number                into the 

dispersion relation:
– Equating real and imaginary parts:

– This allows us to find the loss factor:
– Substituting l into the real part:

– Finally yields:
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Extreme case: light damping
• For light damping,                      , leading to:

• From which we recover the (now very small) loss factor:

• Not surprisingly, the situation is almost that of an undamped wave:
– The only difference is that mild attenuation (decrease of amplitude with 

distance) occurs with an almost constant attenuation length of 
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Extreme case: heavy damping
• Working from our derived dispersion relationships:

• Heavy damping implies that            , so that:

• The now heavily damped wave becomes: 

– Now the attenuation becomes very large, with an attenuation length 
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Group velocity: velocity of a wave group
• We know what the phase velocity is:

– i.e. the rate at which the phase of the wave travels in space.  
• We haven’t yet introduced group velocity:

– The group velocity of a wave is the velocity with which the overall 
shape of the wave’s amplitudes (its envelope) travels. 

– It is defined as:
– The function ω(k), which gives ω as a function of k, is known as 

the dispersion relation. 
– If ω is directly proportional to k, e.g.                                      , then 

the group velocity i actly equal to the phase velocity, and the 
wave is non-disper .

– Otherwise, the individual waves will travel at different speeds, and 
dispersion (smearing out) will take place.

vf = w
k

vg = dw
dk

w = ±ck Þ dw dk = ±c

Phase and group velocity for a vibrating string in 
a viscous fluid

• Recall the damped wave equation: 
– We use a complex wave number:
– And the general dispersion relation:
– Equating real parts of the dispersion relation:

• By definition, the phase velocity is given by:

• We can find the group velocity by:

• From this we find the relation: 
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