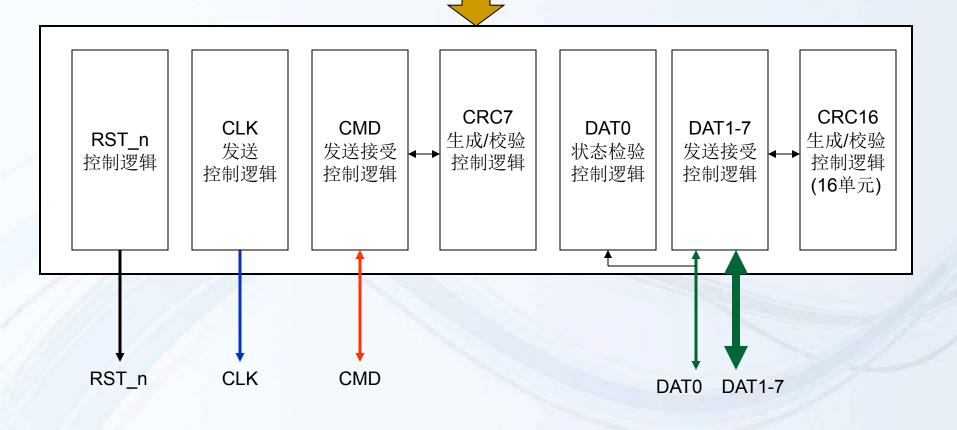
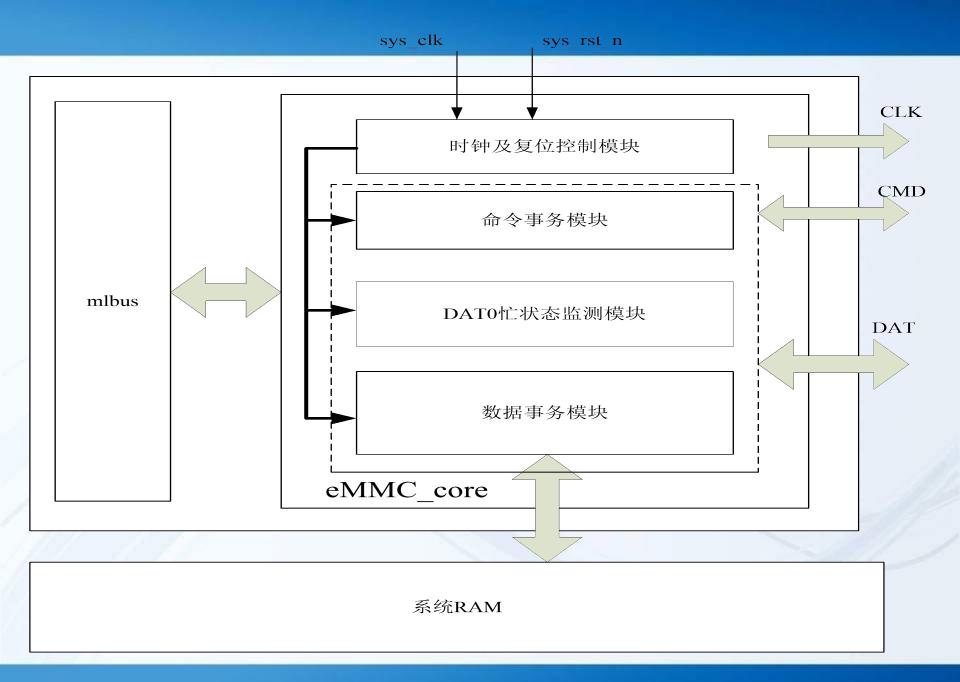

一 eMMC**的构造**




设备状态与工作模式和总线模式的关系

设备状态	工作模式	总线模式	
Inactive 状态	非活动模式		
Pre-Idle 状态	司马拱子		
Pre-Boot 状态	引导模式	Onen drein	
Idle 状态		Open-drain	
Ready 状态	设备识别模式		
Identification 状态			
Stand-By 状态			
Sleep 状态			
Transfer 状态			
Bus-Test 状态	数据传输模式		
Sending-Data 状态		Push-pull	
Receiving-Data 状态			
Disconnect 状态			
Boot 状态	引导模式		
Wait-IRQ 状态	中断模式	Open-drain	

eMMC 主机的功能方框图

内部总线

二 eMMC的内部寄存器

寄存器	宽度(字节)	描述	操作旳命令
CID	16	128位的设备辨认寄存器,涉及一种特有的 设备的辨认号码	CMD2
RCA	2	16位的相对地址寄存器,在卡的定义阶段由 主机赋值,用于之后阶段设备的辨认,默认的 值0x0001	CMD3
DSR	2	16位的驱动寄存器,可用于为扩展的操作条件提升总线的性能,默认值为0X404。	CMD4
CSD	16	设备的专用数据寄存器,涉及:数据的格式、 错误修正的类型、最大数据访问的时间、数 据传播的速度、是否有DSR寄存器等	CMD9 CMD27
OCR	4	32位的设备工作条件寄存器,存储电压值、 访问模式、状态位等信息	CMD1
EXT_CSD	512	512字节的设备的扩展专用数据寄存器(192字节能够编程),能够设置设备的多种工作配置,可有SWITCH命令编程	CMD6

三 命令和应答

命令:

- 1命令的类型
- 有四种命令的类型:
- 1)无应答的广播命令(bc)
- 2)有应答的广播命令(bcr)
- 3) DAT上无数据传播的点对点命令(ac)
- 4) DAT上有数据传播的点对点命令(adtc)

2 命令的格式

全部的命令都是固定的长度48位,格式如下表所示

Description	Start Bit	Transmissio n Bit	Command Index	Argument	CRC7	End Bit
Bit position	47	46	[45:40]	[39:8]	[7:1]	0
Width (bits)	1	1	6	32	7	1
Value	"0"	"1"	X	X	X	"1"

全部命令都是以0开始的,紧接着是传播的方向(主机发出的就为1,设备发出的就为0),接下来的6位是命令的索引,这是一组二进制码(0~63),设备就是对这六位译码,区别是哪种命令,还有某些命令需要arg值(例如地址),这一段的长度为32位,全部的命令都会被CRC7保护着,所以CRC保护的是之前的40位,最终以1结束。

命令的应答

应答也是由CMD传播的,由左边的位开始传播,应答位的长度根据应答的类型而定。应答是以0开始的,紧接着是传播的方向(设备 = 0),接下来的值根据类型不同也不同,除了R3以外都会被CRC7保护着,每条命令都是以1结束的。

一共有五种类型的命令应答形式: R1,R1b,R2,R3,R4,R5

R1:

Bit position	47	46	[45:40]	[39:8]	7	0
Width (bits)	1	1	6	32	X	1
Value	"0"	"0"	X	X	CRC7	"1"
Description	Start bit	Transmissio n bit	Command index	Device status	CRC7	End bit

该应答的长度为48位,45:40显示的是命令的索引,39

•

38是32位的设备状态。

R1b:

和R1的区别只是在DAT0上存在忙信号的传播。

R2: (CID、CSD寄存器)

Bit position	135	134	[133:128]	[127:1]	0
Width (bits)	1	1	6	127	1
Value	"0"	"0"	111111	X	"1"
Description	Start bit	Transmission bit	Check bits	CID or CSD register incl. internal CRC7	End bit

该应答的长度为136位,CID的内容会作为CMD2和CMD10的应答发送给主机,CSD的内容会作为CMD9的应答发送给主机,仅仅只有CID和CSD的[127:1]被传播,最终一位被应答的结束位所替代。

R3: (OCR寄存器)

Description Start bit		Transmission bit	Check bits	OCR register	Check bits	End bit
Value	"0"	"0"	"111111"	X	"1111111"	"1"
Width (bits)	1	1	6	32	7	1
Bit position	47	46	[45:40]	[39:8]	[7:1]	0

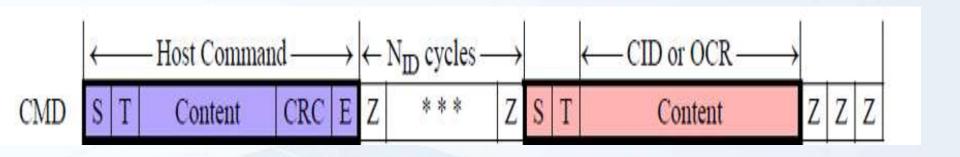
该应答的长度为48位,OCR寄存器的值会作为CMD1的应答发送给主机。

R4: (Fast IO)

Bit position	47	46	[45:40]	40] [39:8] Argument field					0
Width (bits)	1	1	6	16 1 7 8				7	1
Value	"0"	"0"	"10011 1"	X	х	X	x	X	"1"
Description	Start bit	Transmissi on bit	CMD3 9	RCA [31:1 6]	Statu s [15]	Register address [14:8]	Read register contents [7:0]	CRC 7	End bit

该应答位的长度48位,ARG部分涉及RCA的值、寄存器的值、寄存器的值,假如操作成功,状态位就会被置位。

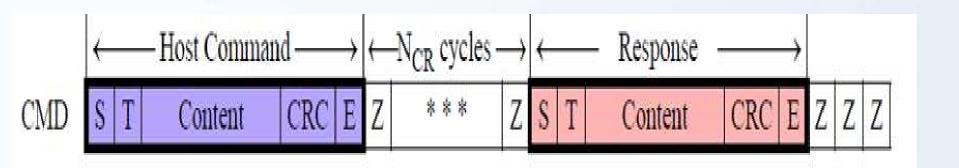
R5: (中断祈求)


Bit position	47	46	[45:40]	[39:8] Ar	[7:1]	0	
Width (bits)	1	1	6	16	16	7	1
Value	"0"	"0"	"10100 0"	X	x	X	"1"
Description	Start bit	Transmissi on bit	CMD4 0	RCA [31:16] of winning Device or of the host	[15:0] Not defined. May be used for IRQ data	CRC 7	End bit

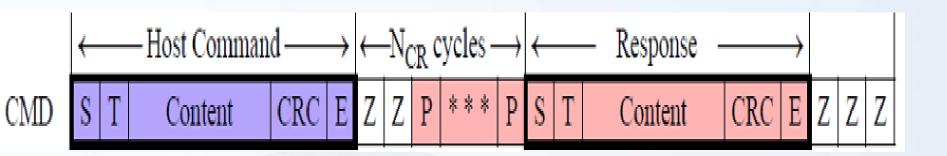
该应答的长度为48位,假如应答是主机自己发送的,那么RCA的值为0x0000。

3 命令和应答的时序:

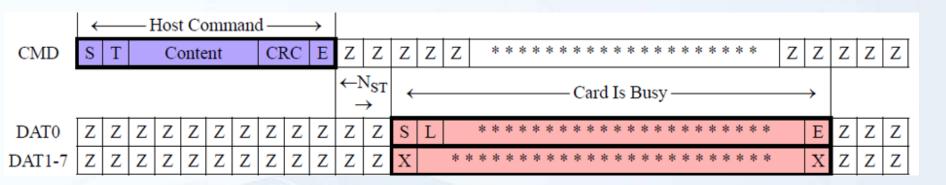
不论是单倍数据率模式还是双倍数据率模式, 主机的命令和设备的应答都是在时钟的上升沿采样的。


设备的辨认及设备的操作条件的时序

设备的辨认(CMD2)和设备的操作条件(CMD1)工作在open-drain模式下,设备给主机的应答是在NID个时钟周期后开始的。假如在经过NID+1个时钟周期依然没收到应答的话,主机就需要做超时报告

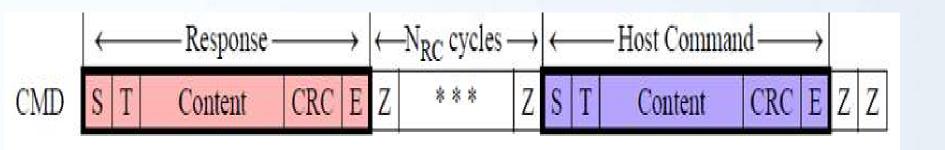

$$(NID = 5)$$

给RCA赋值的时序


给RCA赋值(CMD3)也是工作在open-drain模式下,从主机发完命令道设备应答之间最小的延迟时间为NCR个时钟周期。(NCR = 2-64)

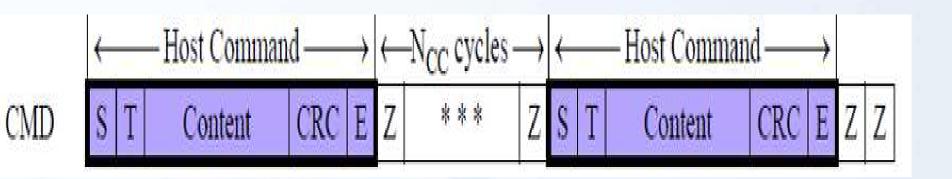
数据传播模式下命令及应答的时序:

在设备接受到RCA后就会打开数据传播模式,该模式是工作在push-pull模式下的。在发送完命令之后紧接着有两位的Z(高阻),这是给总线定义方向留的时间,之后是被应答器件设为P位,除了CMD1,2,3以外,全部的应答时序都与这个图有关。(NCR = 2-64)


R1b**的应答**:

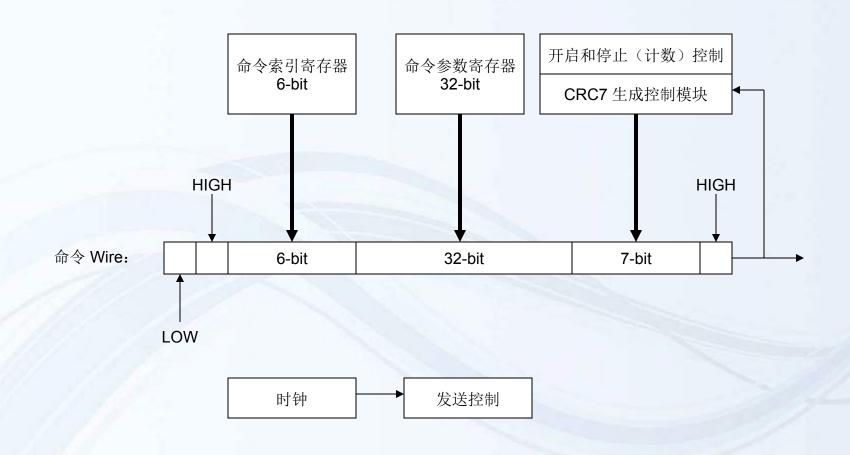
有些命令,例如说CMD6,在R1应答的时候需要BUSY信号,在命令传播完两个时钟周期后,BUSY信号开始,DAT0线被拉低,DATA1-7上的值无关。

(NST = 2, HS200: 2-4)


最终一条设备的应答--下一条是主机的命令:

主机在接受到设备最终一条应答之后,在经过至少NRC个时钟周期之后主机就能够开始下一条命令传播,这个时序图与全部的主机命令都有关。

(NRC = 8)


最终一条主机命令--下一条是主机命令

在主机发送完最终一条命令后,在经过至少NCC个时钟周期 之后主机就能够发送最终一条命令。

(NCC = 8)

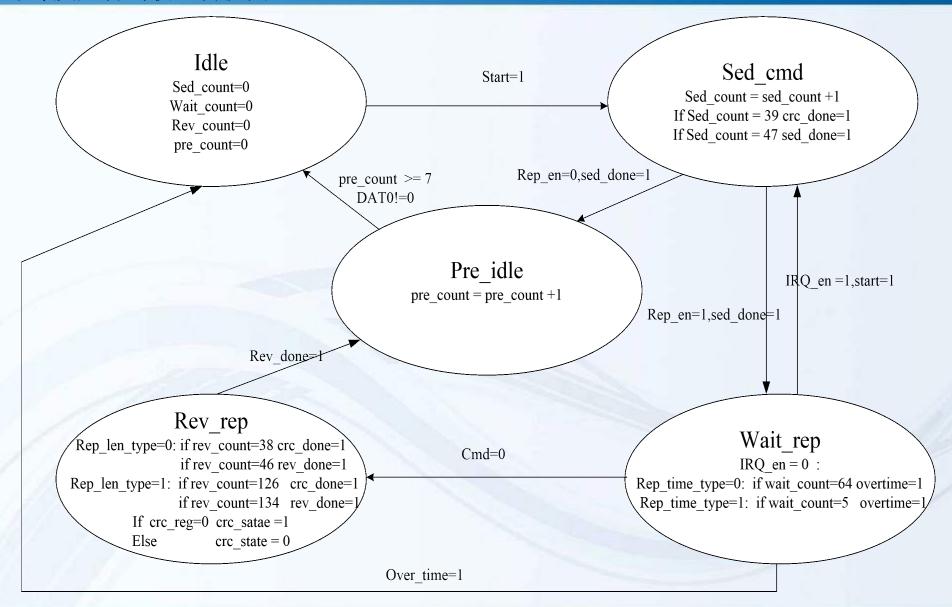
一种 CMD 命令发送控制模型

应答接受模块控制状态寄存器

 应答控制状态寄存器 (8-bit)

 发送使能
 接受使能
 应答格式
 延迟模式
 超时
 CRC 状态
 接受完毕
 忙状态

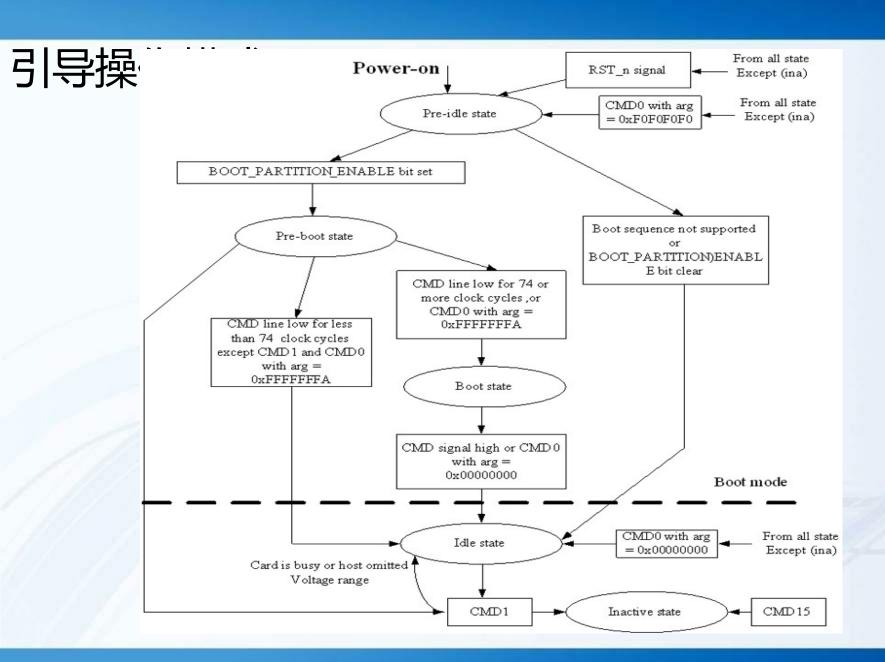
命令索引寄存器 6-bit 应答格式: 0: 长度 48-bit

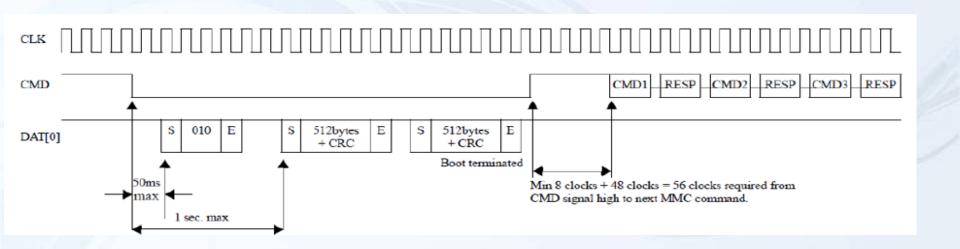

1: 长度 136-bit

延迟模式: 0: NCR - 最小 2 时钟周期,最大 64 时钟周期

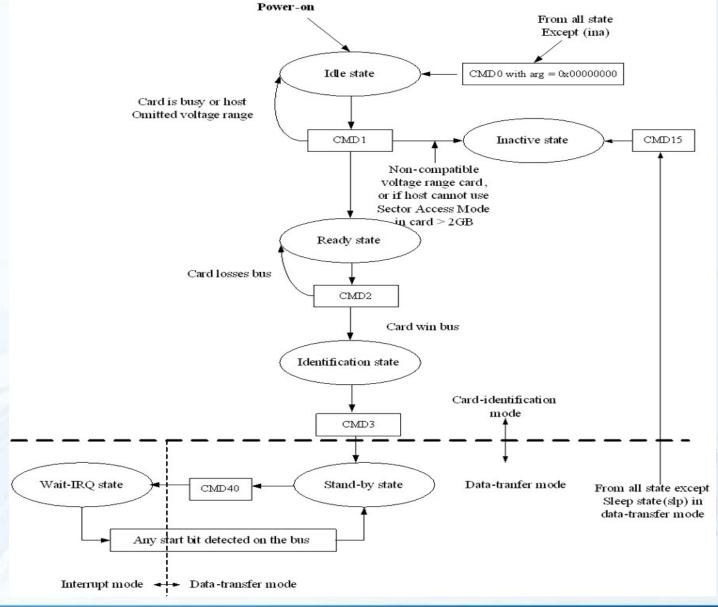
1: NID - 最小 5 时钟周期,最大 5 时钟周期

应答(命令)参数寄存器 32-bit

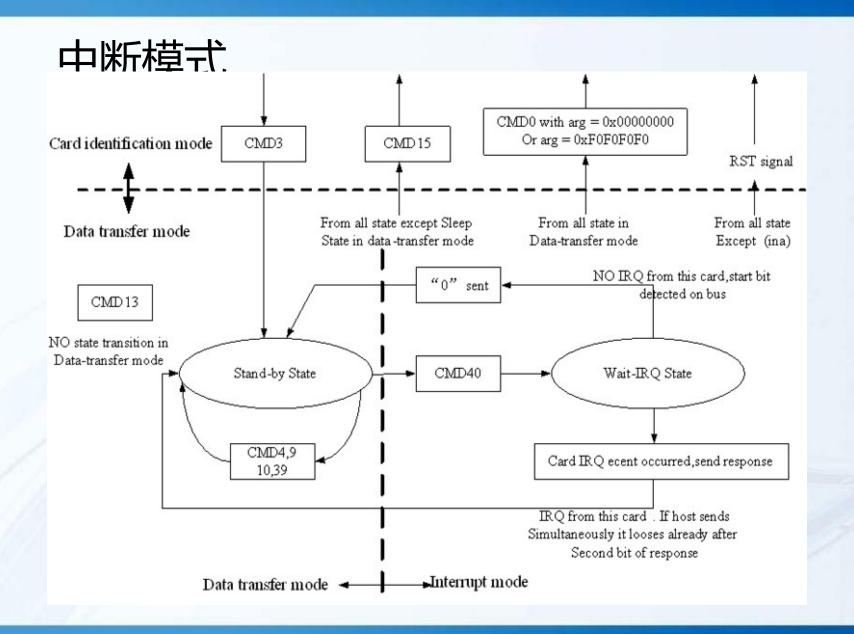

命令及应答的状态转换图


四 EMMC的工作模式

eMMC有五种工作模式:


- 1)引导操作模式
- 2)设备旳辨认模式
- 3)中断模式
- 4)数据传播模式
- 5)非活动模式

在上电或软硬件复位后,在CMD1发送之前,假如保持CMD线为低不少于74个时钟周期,设备就辨认出开启了引导操作模式,内部就会开始准备引导数据。主机就会从EXT_CSD[179]字节的[5:3]选择的引导区来读取引导数据,在将CMD线拉低1秒后来,设备就经过DAT线开始发送第一种引导数据给主机,主机必须保持CMD线为低直到读完全部的BOOT数据(push-pull模式)。



设备的辨认模式:

设备的辨认过程:

主机首先发送CMD1来获取设备的操作条件,对于不兼容的设 备会进入非活动状态,之后主机发送广播命令CMD2来获取全部设 备的CID号,全部无定义的设备(处于Ready State的设备)会 同步发送他们的CID号,但是只会有一种设备成功的将CID号完全 的发送给主机(设备能够监测发到总线上的设备号),其他设备会 依然停留在Ready State状态等待下一种辨认周期。而被选中的设 备会进入设备的辨认状态,之后主机会发送CMD3命令来给这些设 备赋一种相对地址,以用于将来的数据传播,完毕赋值后,设备就 进入到Stand-by状态,同步会将输出驱动由open-drain变为 push-pull。主机会反复这么的过程,直到没有设备应答CMD2为 止(等待应答的时间为NID=5个时钟周期)。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/587110153154006156