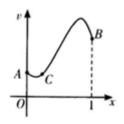
专题 3.5 导数的综合应用

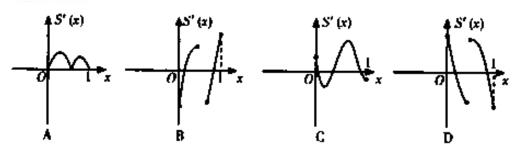
A基础巩固训练

1. 定义在区间[0,1]上的函数 f(x)的图象如图所示,以

A(0, f(0)), B(1, f(1)), C(x, f(x)) 为顶点的 \triangle ABC 的面积记为函数 S(x),则函数 S(x)

的导函数S'(x)的大致图象为(





【答案】D

【解析】

因为 ΔABC 底边长一定,点 C由 A到 B 的过程中,当 C与 A、B 共线时不能组成三角形,所以函数 S(x)与其导函数都不连续,故排除选项 A 、C ,又点 C 由 A 到 B 的过程中 ΔABC 面积先增后减,再增再减,因 此导函数应该先正后负,再正再负,所以选项 D 符合题意,故选 D

2. 定义在 R 上的函数 y = f(x), 满足 f(1-x) = f(x), $(x-\frac{1}{2})f'(x) > 0$, 若 $x_1 < x_2$ 且 $x_1 + x_2 > 1$,则有(

$$A. \quad f(x_1) < f(x_2)$$

B.
$$f(x_1) > f(x_2)$$

A.
$$f(x_1) < f(x_2)$$
 B. $f(x_1) > f(x_2)$ C. $f(x_1) = f(x_2)$ D. 不能确定

【答案】A

【解析】由 $f(1-x) = f(x), (x-\frac{1}{2})f'(x) > 0$,可知函数y = f(x)关于 $x = \frac{1}{2}$ 对 称且 $x > \frac{1}{2}$ 递增, $x < \frac{1}{2}$ 递减. 由若 $x_1 < x_2$ 且 $x_1 + x_2 > 1$, 所以 x_1, x_2 的位置关系只有 两种. 若 $\frac{1}{2}$ < x_1 < x_2 . 则 $f(x_1)$ < $f(x_2)$ 成立. 若 x_1 < $\frac{1}{2}$ < x_2 . 则 $\frac{1}{2}$ - x_1 < x_2 - $\frac{1}{2}$. 根据对 称性可得 $f(x_1) < f(x_2)$. 综上结论成立.

3. 【2017 河北武邑三调】已知f(x)是定义在R上的偶函数,其导函数为 f'(x),若 f'(x) < f(x), 且 f(x+1) = f(3-x), f(2015) = 2,则不等式 $f(x) < 2e^{x-1}$ 的解集为()

A.
$$(1,+\infty)$$

A.
$$(1,+\infty)$$
 B. $(e,+\infty)$

C.
$$(-\infty,0)$$

D.
$$\left(-\infty, \frac{1}{e}\right)$$

【答案】A

【解析】可取特殊函数 $f(x) = 2 \Rightarrow 2 < 2e^{x-1} \Rightarrow e^{x-1} > 1 \Rightarrow x > 1$, 故选 A.

4. 己知定义在R上的可导函数 f(x) 的导函数为 f'(x),满足 f'(x) < f(x),

且 f(x+2) 为偶函数, f(4)=1,则不等式 $f(x) < e^x$ 的解集为(

A.
$$(-2, +\infty)$$
 B. $(4, +\infty)$ C. $(1, +\infty)$ D. $(0, +\infty)$

B.
$$(4,+\infty)$$

C.
$$(1,+\infty)$$

D.
$$(0,+\infty)$$

【答案】D

【解析】

因为函数 f(x) 满足 f(x+2) 为偶函数且 f(4)=1,所以 f(2+x)=f(2-x) 且 f(0)=1,令 $g(x)=\frac{f(x)}{a^x}$, 则 $g'(x) = \frac{f'(x) - f(x)}{e^x} < 0$ 在 R 上恒成立,即函数 g(x) 在 R 上单调递减,又因为 $g(0) = \frac{f(0)}{e^0} = 1$,所以 由g(x) < 1,得x > 0,即不等式 $f(x) < e^x$ 的解集为 $(0,+\infty)$;故选 D.

5. 【2017 山西大学附中二模】设函数 $f(x) = e^{x}(2x-1) - ax + a$, 其中 a < 1,

若存在唯一的整数t, 使得f(t) < 0, 则a的取值范围是()

A.
$$\left[-\frac{3}{2e}, 1 \right]$$
 B. $\left[-\frac{3}{2e}, \frac{3}{4} \right]$

B.
$$\left[-\frac{3}{2e}, \frac{3}{4}\right]$$

$$C. \left[\frac{3}{2e}, \frac{3}{4} \right)$$

D.
$$\left[\frac{3}{2e},1\right)$$

【答案】D

【解析】令 $g(x)=e^x(2x-1),h(x)=ax-a$. 由题意知存在唯一整数t, 使得

g(t)在直线h(x)的下方. $g'(x) = e^{x}(2x+1)$, 当 $x < -\frac{1}{2}$ 时, 函数单调递减, 当 $x > -\frac{1}{2}$, 函数单调递增, 当 $x = -\frac{1}{2}$ 时, 函数取得最小值为 $-2e^{-\frac{1}{2}}$. 当x = 0时, g(0) = -1, 当 x = 1 时, g(1) = e > 0, 直线 h(x) = ax - a 过定点(1,0), 斜率为 a, 故 -a > g(0)且 $g(-1) = -3e^{-1} \ge -a - a$,解得 $m \in \left[\frac{3}{2e}, 1\right]$.

B能力提升训练

- 1. 【四川成都树德中学高三模拟】若方程 $x^3-3x+m=0$ 在[0,2]上有解,则实 数 m 的取值范围是 (
 - A. [-2,2]
- B. [0,2]
- C. [-2,0] D. $(-\infty,-2) \cup (2,+\infty)$

【答案】A

【解析】方程 $x^3-3x+m=0$ 在[0,2]上有解,等价于 $m=3x-x^3$ 在[0,2]上有解, 故 m 的取值范围即为函数 $f(x)=3x-x^3$ 在[0,2]上的值域, 求导可得 $f'(x) = 3 - 3x^2 = 3(1 - x^2)$,令 f'(x) > 0 可知 f(x) 在 (-1,1) 上单调递增,在 $(-\infty,-1)$ U $(1,+\infty)$ 上单调递减,故当 $x \in [0,2]$ 时 $f(x)_{max} = f(1) = 2$, $f(x)_{\min} = \min\{f(0), f(2)\} = -2$, 故 m 的取值范围[-2,2].

2.【2017 四川泸州四诊】已知函数 $f(x) = \frac{\ln(2x)}{x}$, 关于x的不等式 $f^{2}(x)+af(x)>0$ 只有两个整数解,则实数a的取值范围是(

A.
$$\left(-\ln 2, -\frac{1}{3}\ln 6\right]$$
 B. $\left(-\frac{1}{e}, -\frac{\ln 6}{3}\right]$ C. $\left[\frac{1}{3}\ln 6, \ln 2\right)$ D. $\left[\frac{\ln 6}{3}, \frac{2}{e}\right]$

B.
$$\left(-\frac{1}{e}, -\frac{\ln 6}{3}\right]$$

C.
$$\left[\frac{1}{3}\ln 6, \ln 2\right]$$

D.
$$\left[\frac{\ln 6}{3}, \frac{2}{e}\right]$$

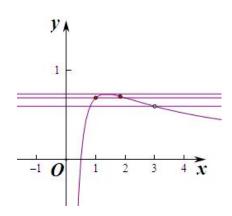
【答案】A

【解析】函数 f(x)的定义域为 $(0,+\infty)$,则 $f'(x) = \frac{1 - \ln(2x)}{x^2}$,当 f(x) > 0得 $1 - \ln(2x) > 0$,即 $\ln(2x) < 1$,即 0 < 2x < e, 即 $0 < x < \frac{e}{2}$,由f(x) < 0得 1-in(2x) < 0,得 in(2x) > 1,即2x > e,即 $x > \frac{e}{2}$,即当 $x = \frac{e}{2}$ 时,函数f(x)取得极大值, 同时也是最大值 $f\left(\frac{e}{2}\right) = \frac{\ln e}{e^2} = 2e$,即当 $0 < x < \frac{e}{2}$ 时, $f(x) < \frac{2}{e}$ 有一个整数解 1,

当 $x>\frac{e}{2}$ 时, $0< f(x)<\frac{2}{e}$ 有无数个整数解,若a=0,则f(x)+af(x)>0得f(x)>0,此时有无数个整数解,不满 卫条件。若 a>0,则由 $f^2(x)+af(x)>0$ 得 f(x)>0 或 f(x)<-a,当 f(x)>0 时,不等式有无数个整数解,不满足条件。 当 a<0时,由 f(x)+af(x)>0 得 f(x)>-a或 f(x)<0,当 f(x)<0时,没有整数解,则要使当 f(x)>-a有两个整数解, $f(1) = \ln 2, f(2) = \frac{\ln 4}{2} = \ln 2, f(3) = \frac{\ln 6}{3},$

∴ 当 $f(x) \ge 1$ n2 时,函数有两个整数点 1,2,当 f(x) ... $\frac{\ln 6}{3}$ 时,函数有 3 个整数点 1, 2, 3,

∴要使 f(x)>-a 有两个整数解,则 $\frac{\ln 6}{3} \le -a < \ln 2$,即 $-\ln 2 < a \le -\frac{1}{3} \ln 6$,本 题选择 A 选项.



3.【2017 广东惠州二调】已知定义在R上的函数y = f(x)满足:函数 y = f(x-1)的图象关于直线 x = 1 对称,且当 $x \in (-\infty,0), f(x) + xf'(x) < 0$ 成立 (f'(x)是函数 f(x) 的导函数), 若 $a = (\sin \frac{1}{2}) f(\sin \frac{1}{2})$, $b = (\ln 2) f(\ln 2)$, $c = 2f(\log_{\frac{1}{2}}\frac{1}{4})$,则 a,b,c 的大小关系是(

- (A) a > b > c (B) b > a > c (C) c > a > b (D) a > c > b

【答案】A

【解析】:函数 y = f(x-1) 的图象关于直线 x = 1 对称, $\therefore y = f(x)$ 关于 y 轴

对称, ∴函数 y = xf(x) 为奇函数. 因为 [xf(x)]' = f(x) + xf'(x),

∴ 当 $x \in (-\infty, 0)$ 时, [xf(x)]' = f(x) + xf'(x) < 0 , 函数 y = xf(x) 单调递减,

当 $x \in (0,+\infty)$ 时,函数y = xf(x) 单调递减.

Q
$$0 < \sin \frac{1}{2} < \frac{1}{2}$$
, $1 > \ln 2 > \ln \sqrt{e} = \frac{1}{2}$, $\log_{\frac{1}{2}} \frac{1}{4} = 2$ $0 < \sin \frac{1}{2} < \ln 2 < \log_{\frac{1}{2}} \frac{1}{4}$,

∴ *a*>*b*>*c*, 故选 A.

4. 已知函数 f(x) 是偶函数, f'(x) 是它的导函数, 当x > 0 时,

 $f(x) + xf'(x) \le 0$ 恒成立,且 f(-2) = 0,则不等式 xf(x) < 0 的解集为_____.

【答案】(-2,0) □(2,+∞)

【解析】令g(x)=xf(x),则函数g(x)是奇函数,当x>0时, $g'(x)=f(x)+xf'(x)\leq 0$,因此g(x)在 $(0,+\infty)$ 上单调减,从而g(x)在 $(-\infty,0)$ 上单调增,由f(-2)=0得

- 5. 已知函数 $f(x) = \frac{1}{2}ax^2 \ln x 2$, $a \in \mathbb{R}$.
 - (I) 讨论函数 f(x) 的单调性;
 - (II) 若函数f(x)有两个零点,求实数a的取值范围.

【答案】(I) 当 $a \le 0$ 时,f(x) 在 $(0,+\infty)$ 上单调递减;当a > 0 时,函数

$$f(x)$$
在 $(0,\frac{\sqrt{a}}{a})$ 上单调递减,在 $(\frac{\sqrt{a}}{a},+\infty)$ 上单调递增;(II) $(0,e^3)$.

【解析】

(I)
$$f'(x) = ax - \frac{1}{x} = \frac{ax^2 - 1}{x}, x > 0$$

① 当 $a \le 0$ 时,f'(x) < 0,f(x)在 $(0, +\infty)$ 上单调递减;

∴函数
$$f(x)$$
 在 $(0,\frac{\sqrt{a}}{a})$ 上单调递减,在 $(\frac{\sqrt{a}}{a},+\infty)$ 上单调递增

综上: 当 $a \leq 0$ 时, f(x)在 $(0, +\infty)$ 上单调递减;

当
$$a>0$$
时,函数 $f(x)$ 在 $(0,\frac{\sqrt{a}}{a})$ 上单调递减,在 $(\frac{\sqrt{a}}{a},+\infty)$ 上单调递增

(II) 当 $a \le 0$ 时,由(I) 得f(x)在(0,+¥)上单调递减,函数f(x)不可能有两个零点;

当 a>0 时,由(I)得,函数f(x)在 $(0,\frac{\sqrt{a}}{a})$ 内单调递减,在 $(\frac{\sqrt{a}}{a},+\infty)$ 内单调递增,且当 x 趋近于 0 和正无穷大时, f(x) 都趋近于正无穷大,

故若要使函数 f(x) 有两个零点,则 f(x) 的极小值 $f(\frac{\sqrt{a}}{a}) < 0$,

$$\mathbb{P}$$
 即 $\frac{1}{2} + \frac{1}{2} \ln a - 2 < 0$,解得 $0 < a < e^3$,

综上所述,a的取值范围是 $(0, e^3)$

C 思维拓展训练

1. 设函数 $f(x) = ax^3 + bx^2 + cx + d$ 有两个极值点 x_1, x_2 , 若点 $P(x_1, f(x_1))$ 为坐标原点,点 $Q(x_2, f(x_2))$ 在圆 $C: (x-2)^2 + (y-3)^2 = 1$ 上运动时,则函数 f(x) 图象的切线斜率的最大值为(

A.
$$3 + \sqrt{2}$$

B.
$$2 + \sqrt{3}$$

C.
$$2 + \sqrt{2}$$

D.
$$3 + \sqrt{3}$$

【答案】D

【解析】

因为 $f(x) = ax^3 + bx^2 + cx + d$, 所以 $f'(x) = 3ax^2 + 2bx + c$, 又因为点 $P(x_1, f(x_1))$ 为坐标原点, 所以 f(0) = 0, f'(0) = 0, c = 0, d = 0,

$$f'(x) = 3ax^2 + 2bx \le -\frac{2b}{3a}$$
, $x_2 = -\frac{b}{2a}$, $f(x_2) = a\left(-\frac{b}{2a}\right)^3 + b\left(-\frac{b}{2a}\right)^2 = \frac{4b^3}{27a^2}$, X

点 $Q(x_2, f(x_2))$ 在圆 $C: (x-2)^2 + (y-3)^2 = 1$ 上运动, 所以

$$a < 0$$
 , $k = f'(x) = 3ax^2 + 2bx \le -\frac{2b}{3a} = \frac{3}{2} \frac{y_2}{x_2}$, $\frac{y_2}{x_2}$ 表示是圆上动点与原点连线的斜

率,由几何意义可求得 $\frac{y_2}{x_2}$ 的最大值为 $2+\frac{2\sqrt{3}}{3}$,因此k的最大值为 $3+\sqrt{3}$,故选D.

2. 已知函数 $f(x) = \ln \frac{x}{2} + \frac{1}{2}$, $g(x) = e^{x-2}$, 对于 $\forall m \in R, \exists n \in (0, +\infty)$ 使得 g(m) = f(n) 成立,则 n-m 的最小值为(

A. $\lim_{R \to \infty} \frac{\ln 2}{2\sqrt{e}-3}$ D. $e^{2}-3$

【答案】B

【解析】由题意令
$$e^{m-2} = \ln \frac{n}{2} + \frac{1}{2} = t, (t>0)$$
,则 $m = \ln t + 2, n = 2e^{t-\frac{1}{2}}$,从而 $n-m = 2e^{t-\frac{1}{2}} - \ln t - 2 = h(t)$,由 $h'(t) = 2e^{t-\frac{1}{2}} - \frac{1}{t} = 0$ 得 $t = \frac{1}{2}$,而当 $t > 0$ 时 $h'(t) = 2e^{t-\frac{1}{2}} - \frac{1}{t}$ 是单调递增函数,所以当 $t > \frac{1}{2}$ 时 $h'(t) > 0$;当 $0 < t < \frac{1}{2}$ 时 $h'(t) < 0$;因此 $t = \frac{1}{2}$ 时 $h(t)$ 取最小值: $2e^{\frac{1}{2}-\frac{1}{2}} - \ln \frac{1}{2} - 2 = \ln 2$.选 B.

3. 若不等式 $bx+c+9\ln x \le x^2$ 对任意的 $x \in (0,+\infty)$, $b \in (0,3)$ 恒成立,则实数c的取值范围是______.

【答案】 (-∞,-9 ln 3]

【解析】根据题意,得关于 b 的函数: $f(b) = xb + (9\ln x - x^2 + c)$,这是一个一次函数,要使 $f(b) \le 0$ 对任意的 $b \in (0,3), x \in (0,+\infty)$ 恒成立,则: $f(3) \le 0$

,即有: $3x+9\ln x-x^2+c\leq 0$ 对任意的 $x\in (0,+\infty)$ 恒成立,则有:

$$c \le -3x - 9 \ln x + x^2$$
, 可令函数 $g(x) = -3x - 9 \ln x + x^2$, 求导可得:

$$g'(x) = -3 - \frac{9}{x} + 2x = \frac{2x^2 - 3x - 9}{x} = \frac{(2x + 3)(x - 3)}{x}$$
, ξ 现 有:

- 4. 【2017 安徽马鞍山二模】已知函数 $f(x) = \ln x + \frac{1}{2}x^2 \frac{1}{2}$.
 - (I)证明曲线 f(x)上任意一点处的切线斜率不小于 2;
- (II)设 $k \in R$, 若g(x) = f(x) 2kx有两个极值点 x_1, x_2 , 且 $x_1 < x_2$, 证明: $g(x_2) < -2.$

【答案】(I) 见解析(II)见解析

【解析】试题分析: (I)先求导函数 f'(x), 只需证明 $f'(x) \ge 2$ 成立即可;

(II) 令
$$g(x) = f(x) - 2kx = \ln x + \frac{1}{2}x^2 - 2kx - \frac{1}{2}(x > 0)$$
, $g'(x) = \frac{1}{x} + x - 2k$, 可 $\Re g'(x) = \frac{1}{x} + x - 2k = 0$ 两根为 x_1, x_2 , 结合韦达定理可化简得

$$g(x_2) = \ln x_2 - \frac{x_2^2}{2} - \frac{3}{2}(x_2 > 1)$$
, 研究函数 $h(x) = \ln x - \frac{x^2}{2} - \frac{3}{2}(x > 1)$ 的单调性,可证结论.

试题解析: (I)因为x>0,所以切线斜率 $f'(x)=\frac{1}{x}+x\geq 2$,当且仅当x=1时取得等号:

(II)
$$g(x) = f(x) - 2kx = \ln x + \frac{1}{2}x^2 - 2kx - \frac{1}{2}$$
 $(x > 0)$,
 $g'(x) = \frac{1}{x} + x - 2k$,

当
$$k \le 1$$
 时, $g'(x) = \frac{1}{x} + x - 2k \ge 2\sqrt{\frac{1}{x} \cdot x} - 2k = 2 - 2k \ge 0$,

函数g(x)在 $(0,+\infty)$ 上递增,无极值.

当
$$k > 1$$
 时, $g'(x) = \frac{1}{x} + x - 2k = \frac{x^2 - 2kx + 1}{x}$,

由
$$g'(x)=0$$
 得 $x^2-2kx+1=0$, $\Delta=4(k^2-1)>0$,设两根为 x_1,x_2 ,则 $x_1+x_2=2k$, $x_1x_2=1$,

其中
$$0 < x_1 = k - \sqrt{k^2 - 1} < 1 < x_2 = k + \sqrt{k^2 - 1}$$
,

g(x)在 $(0,x_1)$ 上递增,在 (x_1,x_2) 上递减,在 $(x_2,+\infty)$ 上递增,

从而g(x)有两个极值点 x_1,x_2 , 且 $x_1 < x_2$,

$$g(x_2) = \ln x_2 + \frac{x_2^2}{2} - 2kx_2 - \frac{1}{2} = \ln x_2 + \frac{x_2^2}{2} - (x_1 + x_2)x_2 - \frac{1}{2}$$

$$= \ln x_2 + \frac{x_2^2}{2} - \left(\frac{1}{x_2} + x_2\right) x_2 - \frac{1}{2} = \ln x_2 - \frac{x_2^2}{2} - \frac{3}{2},$$

$$\mathbb{F}\left(x_{2}\right) = \ln x_{2} - \frac{x_{2}^{2}}{2} - \frac{3}{2}(x_{2} > 1)$$
,

构造函数
$$h(x) = \ln x - \frac{x^2}{2} - \frac{3}{2}(x > 1)$$
, $h'(x) = \frac{1}{x} - x < 0$,

所以h(x)在 $(1,+\infty)$ 上单调递减,且h(1)=-2. 故 $g(x_2)<-2$.

5.【2017 重庆二诊】已知曲线 $f(x) = \frac{\ln^2 x + a \ln x + a}{x}$ 在点(e, f(e))处的切线

与直线 $2x+e^2y=0$ 平行, $a \in R$.

- (1) 求 a 的 值;
- (2) 求证: $\frac{f(x)}{x} > \frac{a}{e^x}$.

【答案】(I) a=3; (II) 见解析.

【解析】

试题分析:(1)先求导数,再运用导数的几何意义建立方程求解;(2)先将不等式进行等价转化,再运用导数分别求不等式中的两边的函数的最值进行分析推证:

(I)
$$f'(x) = \frac{-\ln^2 x + (2-a)\ln x}{x^2}$$
, $\oplus \bigoplus f'(e) = \frac{-1+2-a}{e^2} = -\frac{2}{e^2} \Rightarrow a = 3$;

(II)
$$f(x) = \frac{\ln^2 x + 3\ln x + 3}{x}$$
, $f'(x) = \frac{-\ln x(\ln x + 1)}{x^2}$, $f'(x) > 0 \Rightarrow \frac{1}{e} < x < 1$,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/595123123022012014