专题验收评价

专题 04 氧化还原反应

内容概览

A·常考题不丢分

【考点一 氧化还原反应的基本概念】

【考点二 氧化还原反应的基本规律】

【考点三 氧化还原反应方程式的配平与计算】

【微专题"陌生情境下"方程式的书写】

B·综合素养拿高分/拓展培优拿高分

C·挑战真题争满分

A·常考题不丢分

【考点一 氧化还原反应的基本概念】

- 1. (2023·浙江金华·模拟预测) 关于反应 2MnSO₄+5Na₂S₂O₈+8H₂O=2NaMnO₄+4Na₂SO₄+8H₂SO₄,下列说法 正确的是
- A. Na₂S₂O₈ 中 S 元素化合价为+7 价 B. MnSO₄ 是氧化剂
- C. 生成 1molNaMnO₄时转移 5mol 电子 D. MnO₄的氧化性弱于 Mn²⁺

【答案】C

【解析】A. $Na_2S_2O_8$ 中存在一个过氧键,即有 2 个氧显-1 价,其余的氧显-2 价,根据化合物的化合价为 0, 可得硫元素为+6价,A错误;B.在该反应中锰元素由+2价升高为+7价,则硫酸锰为还原剂,B错误;C.在 该反应中锰元素由+2 价升高为+7 价,则生成 1molNaMnO4时转移 5mol 电子, C 正确; D. 在该反应中高锰 酸根是氧化产物,其中锰元素的化合价为+7价,锰离子是还原剂,其中锰元素的化合价为+2价,一般同种 元素中元素的化合价越高氧化性越强(氯的含氧酸除外), D 错误; 故选 C。

2. (2023·浙江金华·校联考模拟预测) 加热硅与 Ca(OH)2、NaOH 的混合粉末可获得氢气

 $Si+Ca(OH)_2+2NaOH$ $\stackrel{\Delta}{=}$ $Na_2SiO_3+CaO+2H_2\uparrow$,下列说法正确的是

A. Na₂SiO₃是还原产物

- B. 可推知该反应为吸热反应
- C. 氧化剂与还原剂的物质的量之比为 2:1 D. 该反应为置换反应

【答案】C

【解析】A. 反应 Si+Ca(OH)₂+2NaOH Na₂SiO₃+CaO+2H₂↑中 Si 元素化合价由 0 价上升到+4 价, Na₂SiO₃ 是氧化产物,故A错误; B. 该反应需要加热,但吸热反应不一定需要加热,则不能推知该反应为吸热反应, 故 B 错误; C. 反应 Si+Ca(OH)₂+2NaOH Ma₂SiO₃+CaO+2H₂↑过程中 Ca(OH)₂ 先分解产生 CaO 和 H₂O, Si、 NaOH 和 H₂O 反应生成 Na₂SiO₃ 和 H₂, 其中 Si 元素化合价由 0 价上升到+4 价, H 元素由+1 价下降到 0 价, Si 是还原剂, H₂O 是氧化剂, 氧化剂与还原剂的物质的量之比为 2:1, 故 C 正确; D. 置换反应是单质与 化合物反应生成另外的单质和化合物的化学反应,可表示为 a+bc=b+ac 或 ab+c=ac+b,该反应不是置换反应, 故 D 错误; 故选 C。

- 3. (2023·山东济宁·统考三模)中华古诗文华丽优美且富含哲理,下列叙述不涉及氧化还原反应的是
- A. 落红不是无情物, 化作春泥更护花
- B. 白日登山望烽火, 黄昏饮马傍交河
- C. 欲渡黄河冰寨川, 将登太行雪满山 D. 蜡烛有心还惜别, 替人垂泪到天明

【答案】C

【解析】A. 涉及植物体的腐烂、分解,转化成二氧化碳、水和无机盐,存在元素化合价变化,与氧化还原 反应有关,选项 A 不符合; B. 白日登山望烽火,黄昏饮马傍交河中白日登山望烽火包含着物质燃烧,与氧 化还原反应有关,选项 B 不符合; C. 水的三态变化过程中没有新物质生成,属于物理变化,与氧化还原反 应无关,选项 C 符合; D. 蜡烛燃烧包含氧化还原反应,选项 D 不符合;答案选 C。

- 4. (2023·山东潍坊·统考三模)下列古诗词中不涉及氧化还原反应的是
- A. 美人首饰候王印, 尽是沙中浪底来
- B. 人间巧艺夺天工, 炼药燃灯清昼同
- C. 投泥泼水愈光明, 烁玉流金见精悍
- D. 蜡烛有心还惜别, 替人垂泪到天明

【答案】A

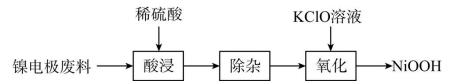
【解析】A. 美人首饰候王印, 尽是沙中浪底来涉及金属单质与杂质的分离属于物理变化, A 正确; B. 人 间巧艺夺天工,炼药燃灯清昼同涉及燃料的燃烧属于氧化还原反应,B错误:C.投泥泼水愈光明,烁玉流 金见精悍涉及冶炼矿石,融化铁水属于氧化还原反应,C错误;D. 蜡烛有心还惜别,替人垂泪到天明涉及 烃类的燃烧属于氧化还原反应, D 错误; 故选 A。

- 5. (2023·广东汕头·统考三模)研究CO,的综合利用对构建低碳环保社会有重要意义。下列有关CO,的应用 中涉及氧化还原反应的是
- A. 利用CO,生产纯碱

B. 利用CO,制甲酸

C. 利用干冰灭火

D. 利用CO,制碳酸饮料


【答案】B

【解析】A. 利用 CO_2 生产纯碱涉及的方程式为: $NH_3+H_2O+CO_2=NH_4HCO_3$,该反应中各元素化合价不变,

故不涉及氧化还原反应,故 A 项错误; B. 利用 CO_2 制甲酸的过程中二氧化碳生成了甲酸,化合价发生改变,故该过程涉及氧化还原反应,故 B 项正确; C. 干冰灭火的原因有两点,首先干冰升华吸热将温度降低至可燃物着火点以下,其次二氧化碳不支持燃烧,不涉及氧化还原反应,故 C 项错误; D. 利用 CO_2 制碳酸饮料是利用二氧化碳与水反应生成碳酸; CO_2 + H_2O = H_2CO_3 ,不涉及氧化还原反应,故 D 项错误。故答案选 B。

【考点二 氧化还原反应的基本规律】

1.(2023·辽宁·校联考三模)一种以镍电极废料(含 Ni 以及少量 Al_2O_3 , Fe_2O_3 和不溶性杂质)为原料制备 NiOOH 的过程可表示为:

"酸浸"后溶液中的金属离子除 Ni²⁺ 外还有少量的 Al³⁺ 和 Fe²⁺ 等。下列说法错误的是

- A. 氧化性: Fe³⁺ > Ni²⁺
- B. 氧化过程的离子方程式: 2Ni²⁺ + ClO⁻ + 4OH⁻ = 2NiOOH ↓ + Cl⁻ + H₂O
- C. 除杂过程仅为过滤操作
- D. 工业上可电解碱性 Ni(OH), 悬浊液制备 NiOOH, 加入一定量的 KCl 有助于提高生产效率

【答案】C

【分析】镍电极废料(含 Ni 以及少量 Al_2O_3 、 Fe_2O_3 和不溶性杂质)经过稀硫酸"酸浸"后,得到 Ni^{2+} 和少量的 Al^{3+} 和 Fe^{2+} 等,调节 pH,将 Al^{3+} 和 Fe^{2+} 转化为沉淀,再过滤除去不溶性杂质,则滤液中含有 Ni^{2+} , Ni^{2+} 经过 KCIO 的氧化,得到 NiOOH。

【解析】A."酸浸"后溶液中的金属离子除 Ni²⁺ 外还有少量的 Al³⁺ 和 Fe²⁺ 等,则发生反应:

Ni+2Fe³⁺=2Fe²⁺+Ni²⁺,则氧化性: Fe³⁺>Ni²⁺,A 项正确; B. Ni²⁺ 经过 KClO 的氧化,得到 NiOOH,反应的离子方程式为 2Ni²⁺+ClO⁻+4OH⁻=2NiOOH+Cl⁻+H₂O,B 项正确; C. 除杂过程包括: 调节 pH,将 Al³⁺ 和 Fe²⁺ 转化为沉淀,再过滤除去不溶性杂质,C 项错误; D. 电解碱性 Ni(OH)₂ 悬浊液制备 NiOOH,阳极反应为: Ni(OH)₂-e⁻+OH⁻=NiOOH \downarrow +H₂O ,若加入一定量的 KCl,氯离子在阳极上失电子生成氯气,氯气在碱性条件下生成 ClO⁻, ClO⁻ 将 Ni(OH)₂ 氧化为 NiOOH,有助于提高生产效率,D 项正确; 故选 C。

- 2.(2023·海南·海南中学校联考一模) ClO_2 是一种常用的消毒剂,可通过反应
- 2NaClO₃ + SO₂ + H₂SO₄ = 2ClO₂ + 2NaHSO₄制取,下列有关说法正确的是
- A. 还原性: ClO₂ > SO₂
- B. 每消耗1molSO₂,转移4mol电子
- C. 氧化剂与还原剂的物质的量之比为 2:1
- D. 若该反应通过原电池来实现,则CIO。是负极产物

【答案】C

【解析】A. 2NaClO₃+SO₂+H₂SO₄=2ClO₂+2NaHSO₄反应中,SO₂是还原剂、ClO₂是还原产物,还原性

 $ClO_2 < SO_2$,故 A 错误; B. SO_2 中 S 元素化合价由+4 升高为+6,每消耗 $lmolSO_2$,转移 2mol 电子,故 B 错误; C. $NaClO_3$ 中 Cl 元素化合价降低, $NaClO_3$ 是氧化剂, SO_2 中 S 元素化合价升高, SO_2 是还原剂,氧化剂与还原剂的物质的量之比为 2:1,故 C 正确; D. 若该反应通过原电池来实现,负极发生氧化反应,正极发生还原反应,则 ClO_2 是正极产物,故 D 错误; 选 C。

3. (2023·山东日照·校联考二模) 钒元素在酸性溶液中有多种存在形式,其中 VO²⁺为蓝色, VO²₂为淡黄色,已知能发生如下反应:

$$I \cdot Fe^{2+} + VO_2^+ + 2H^+ = Fe^{3+} + VO^{2+} + H_2O$$

$$II.5VO^{2+} + MnO_4^- + H_2O = 5VO_2^+ + Mn^{2+} + 2H^+$$

下列说法错误的是

- A. 酸性条件下的氧化性: $MnO_4^- > VO_7^+ > Fe^{3+}$
- B. 反应 II 中氧化产物和还原产物物质的量之比为5:1
- C. 向 $VOSO_4$ 溶液中滴加酸性 $KMnO_4$ 溶液,溶液颜色由蓝色变为淡黄色
- D. 向含 2molVO_2^+ 的酸性溶液中滴加 1molFeI_2 溶液充分反应,转移 3 mol 电子

【答案】D

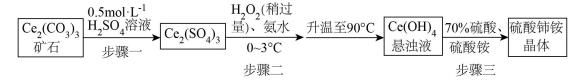
【解析】A. 氧化剂氧化性大于氧化产物,由 I 可知,氧化性 $VO_2^+ > Fe^{3+}$,由 II 可知,氧化性 $MnO_4^- > VO_2^+$;故酸性条件下的氧化性: $MnO_4^- > VO_2^+ > Fe^{3+}$,A 正确;

- B. 反应 II 中 VO^{2+} 发生氧化反应得到氧化产物 VO_2^+ , MnO_4^- 发生还原反应得到还原产物 Mn^{2+} , 由化学方程式可知,氧化产物和还原产物物质的量之比为5:1 , B 正确;C. 向 $VOSO_4$ 溶液中滴加酸性 $KMnO_4$ 溶液, VO^{2+} 被高锰酸钾氧化为 VO_2^+ ,故溶液颜色由蓝色变为淡黄色,C 正确;D. 向含 $2molVO_2^+$ 的酸性溶液中滴加 $1molFel_2$ 溶液充分反应,由于碘离子还原性大于亚铁离子,故碘离子完全和 $2molVO_2^+$ 反应生成碘单质,转移 2mol 电子,D 错误;故选 D。
- 4. (2023 上·江西抚州·高三临川一中校考期中)在复杂的体系中,确认化学反应先后顺序有利于解决问题,下列化学反应先后顺序判断不正确的是
- A. 在含 Ba(OH)₂、KOH 的混合溶液中缓慢通入 CO₂: Ba(OH)₂、KOH、K₂CO₃、BaCO₃
- B. 在含 NH₄ 、Al³⁺、H⁺的溶液中逐滴加入 KOH 溶液: H⁺、Al³⁺、NH₄ 、Al(OH)₃
- C. 在含 AlO₂、OH-、CO₃-的溶液中逐滴加入盐酸: OH-、AlO₂、CO₃-、HCO₃、Al(OH)₃
- D. 在含等物质的量的 S²⁻、SO²⁻、I⁻、Cl⁻、Br的溶液中加入氯水: SO²⁻、S²⁻、I⁻、Br、Cl⁻

【答案】D

【解析】A. 在含 $Ba(OH)_2$ 、KOH 的混合溶液中缓慢通入 CO_2 ,若先跟 KOH 反应,则生成的 K_2CO_3 还会与 $Ba(OH)_2$ 反应,重新生成 $BaCO_3$,所以 $Ba(OH)_2$ 先与 CO_2 反应,KOH 次之,因为 $Ba(HCO_3)_2$ 能与 K_2CO_3 反应,所以 K_2CO_3 先与 CO_2 反应,Ba CO_3 最后与 CO_2 反应,A 正确;B. 因为一水合氨、Al $(OH)_3$ 都能与 H^+ 反应,所以 H^+ 最先与 KOH 反应,一水合氨能与 Al^{3+} 反应,则 Al^{3+} 比 NH_4^+ 先与 KOH 反应,最后是 $Al(OH)_3$

与 KOH 反应,B 正确;C. 因为 HCO_3^- 、Al(OH) $_3$ 都能与 OH·反应,所以 OH·最先与盐酸反应,AlO $_2^-$ 与 HCO_3^- 能发生反应,则 AlO_2^- 与盐酸反应排在第二位, CO_3^{2-} 与盐酸反应排在第三位, HCO_3^- 能与 Al^{3+} 反应,则 HCO_3^- 与盐酸反应排在第四位,最后是 $Al(OH)_3$ 与盐酸反应,C 正确;D. 因为硫酸能与 S^2 -反应,所以 S^2 -最先与氯水反应, I_2 、 Br_2 都能将 SO_3^{2-} 氧化,则 SO_3^{2-} 排在第二位,然后依次是 I^- 、 Br^- 、 CI^- ,D 不正确;故选 D。


- 5. (2023 上·黑龙江大庆·高三铁人中学校考) 在复杂的体系中,确认化学反应先后顺序有利于解决问题,下列化学反应先后顺序判断不正确的是
- A. 在含 Ba(OH)₂、KOH 的混合溶液中缓慢通入 CO₂: Ba(OH)₂、KOH、K₂CO₃、BaCO₃
- B. 在含 NH₄ 、Al³⁺、H⁺的溶液中逐滴加入 KOH 溶液: H⁺、Al³⁺、NH₄ 、Al(OH)₃
- C. 在含 AlO₇、OH-、CO₃²的溶液中逐滴加入盐酸: AlO₇、Al(OH)₃、OH-、CO₃²
- D. 在含等物质的量的 Fe^{2+} 、 Ag^+ 、 Cu^{2+} 、 H^+ 的溶液中加入锌粉: Ag^+ 、 Cu^{2+} 、 H^+ 、 Fe^{2+}

【答案】C

【解析】A. 在含 Ba(OH)₂、KOH 的混合溶液中缓慢通入 CO₂,CO₂ 先与 Ba(OH)₂ 反应生成 BaCO₃ 沉淀,然后 KOH 与 CO₂ 反应生成 K₂CO₃,再发生 K₂CO₃和 CO₂ 反应生成 KHCO₃,最后 BaCO₃和 CO₂ 反应生成 Ba(HCO₃)₂,故 A 正确;B. 在含 NH⁺₄、Al³⁺、H⁺的溶液中逐滴加入 KOH 溶液,H⁺先和 KOH 反应生成水,然后发生 Al³⁺和 KOH 反应生成氢氧化铝沉淀,再发生 NH⁺₄和 KOH 反应生成氨水,最后 Al(OH)₃和 KOH 反应生成偏铝酸钾,故 B 正确;C. 在含 AlO⁻₂、OH·、CO²₃的溶液中逐滴加入盐酸,H⁺先和 OH·反应生成水,然后 AlO⁻₂和 H⁺反应生成氢氧化铝沉淀,再发生 CO²₃和 H⁺反应生成二氧化碳,最后 Al(OH)₃和 H⁺反应生成铝离子,故 C 错误;D. 氧化性:Ag⁺>Cu²⁺>H⁺> Fe²⁺,在含等物质的量的 Fe²⁺、Ag⁺、Cu²⁺、H⁺的溶液中加入锌粉,反应顺序为 Ag⁺、Cu²⁺、H⁺、Fe²⁺,故 D 正确;选 C。

【考点三 氧化还原反应方程式的配平与计算】

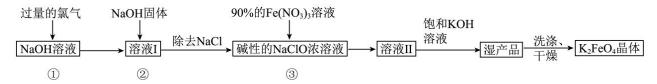
1.(2024·广西北海·统考一模·节选)硫酸铈铵 $\left[\left(NH_4\right)_2Ce\left(SO_4\right)_3\right]$ 微溶于水,不溶于乙醇,溶于无机酸,可用作分析试剂、氧化剂。某工厂用碳酸铈 $\left[Ce_2\left(CO_3\right)_3\right]$ 矿石制备硫酸铈铵的工艺流程如图:

已知: ① K_{sp} [Ce(OH)₄] = 2×10^{-48} 。

②硫酸铈铵的熔点为130℃,沸点为330℃。

回答下列问题:

(4)步骤二中, $Ce_2(SO_4)_3$ 与 H_2O_2 、 $NH_3 \cdot H_2O$ 反应生成 $Ce(OH)_4$ 的化学方程式为_____。


【答案】(4) $Ce_2(SO_4)_3 + H_2O_2 + 6NH_3 \cdot H_2O = 2Ce(OH)_4 \downarrow + 3(NH_4)_2 SO_4$

【解析】(4) $Ce_2(SO_4)_3$ 与 H_2O_2 、 $NH_3 \cdot H_2O$ 反应生成 $Ce(OH)_4$,反应中Ce化合价由+3变为+4、过氧化氢

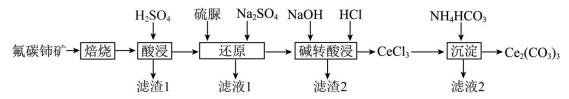
中氧化合价由-1变为-2,结合电子守恒、质量守恒可知,化学方程式为

 $Ce_2(SO_4)_3 + H_2O_2 + 6NH_3 \cdot H_2O = 2Ce(OH)_4 \downarrow +3(NH_4)_2 SO_4;$

2.(2023·黑龙江大庆·统考一模·节选)高铁酸钾 (K_2FeO_4) 是新型多功能水处理剂,其生产工艺如图所示:

已知: ① Cl_2 与 NaOH 溶液反应的产物与反应温度有关,温度较低时产物为 NaCl、NaClO 和 H_2O ; 温度较高时产物为 NaCl、NaClO $_3$ 和 H_2O 。

②同一条件下,溶液的碱性越强,高铁酸盐的稳定性越高。


回答下列问题:

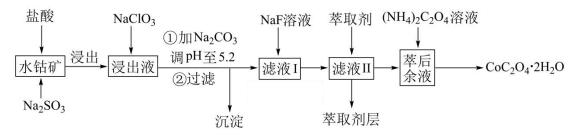
(1)写出 Cl, 与 NaOH 溶液在较高温度下反应的离子方程式: 。

【答案】(1)6OH⁻+3Cl₂ $\stackrel{\Delta}{=}$ 5Cl⁻+ClO₃ +3H₂O

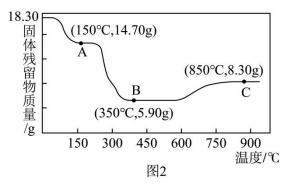
【解析】(1) Cl_2 与 NaOH 溶液在较高温度下反应,产物为 NaCl、NaClO₃和 H_2 O,反应中部分氯化合价由 0 变为-1、部分由 0 变为+5,根据电子守恒可知,离子方程式 $6OH^-+3Cl_2$ $\stackrel{\Delta}{=}5Cl^-+ClO_3^-+3H_2O_3$

3.(2023·江苏南通·统考模拟预测·节选)碳酸铈 $\left[\operatorname{Ce_2}(\operatorname{CO_3})_{_3}\right]$ 是一种稀土材料,工业上常以氟碳铈矿(主要成分为 $\operatorname{CeFCO_3}$ 、 $\operatorname{SiO_2}$)为原料制备碳酸铈,其工艺流程如图所示:

已知: ①"酸浸"后铈元素主要以 $\left[\text{CeF}_{2}\right]^{2+}$ 存在

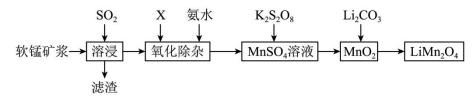

②硫脲(
$$_{\text{H}_2\text{N}}$$
—C—NH₂)是一种常见的还原剂,易被氧化为(SCN₂H₃)₂。

- (2)"还原"时的产物为 $NaCe(SO_4)_2$ 沉淀,该反应的离子方程式为_____。
- (3)"沉淀"时的离子方程式为____。


【答案】(2)
$$\frac{S}{2H_1N_2}$$
 +2[CeF₂]²⁺+2Na⁺+4SO₄²⁻= 2NaCe(SO₄)₂ ↓+(SCN₂H₃)₂+2F⁻+2HF

$$\begin{array}{c|c}
S \\
\parallel \\
H_2N - C - NH_2
\end{array} + 2\left[CeF_2\right]^{2+} + 2Na^+ + 4SO_4^{2-} = 2NaCe\left(SO_4\right)_2 \downarrow + \left(SCN_2H_3\right)_2 + 2F^- + 2HF;$$

4. (2023·陕西渭南·统考一模·节选)草酸钻可用于指示剂和催化剂。工业上用水钻矿(主要成分为 Co_2O_3 ,含少量 Fe_2O_3 、 Al_2O_3 、MnO、MgO、CaO、 SiO_2 等)制取 $CoC_2O_4 \cdot 2H_2O$ 的工艺流程如图所示:


(6) $CoC_2O_4 \cdot 2H_2O$ ($M = 183g \cdot mol^{-1}$)热分解质量变化过程如图 2 所示。其中 600℃以前是隔绝空气加热,600℃以后在空气中加热。 A、B、C 均为纯净物。

- ①用化学方程式表示 A 点到 B 点的物质变化。
- ②C 点所示产物的化学式是。

【解析】(6) ① $CoC_2O_4 \cdot 2H_2O$ 属于变价金属元素的结晶水合物, 600° C前后分解反应原理不同。 600° C前隔绝空气加热的分解产物 A、B 中 Co 的化合价均为+2 价。 600° C后在空气中加热固体质量增加,只能是与空气中的氧气反应,Co 应升价。 $CoC_2O_4 \cdot 2H_2O$ 受热分解生成 A、B 要经过失水与分解两个过程,设 A、B 的摩尔质量分别为 MA、MB,根据 Co 元素守恒 $\frac{18.30g}{183g/mol} = \frac{14.70g}{M_A} = \frac{5.9g}{M_B}$,则 $M_A = 147g/mol$,MB 为 59.0 g/mol,故 A、B 分别为无水物 CoC_2O_4 与 Co,A 点到 B 点的化学方程式为: CoC_2O_4 $\frac{350^{\circ}C}{M_B}$ Co+2CO₂个;② 600° C后在空气中加热,Co 被空气中的氧气氧化,固体质量增加,类比 Fe,Co 有+2、+3 价,可能生成 Co_2O_3 ,也可能生成 Co_3O_4 ,设 C 的化学式为 Co_3O_9 , $x: y = (\frac{7.5}{75}): [\frac{7.5}{75} + \frac{8.30 - 7.50}{16}] = 2: 3$,C 点所示产物的化学式是 Co_2O_3 。

5.(2023·河南郑州·郑州外国语学校校考模拟预测·节选)锰酸锂离子蓄电池是第二代锂离子动力电池。一种以软锰矿浆(主要成分为 MnO_2 ,含少量 Fe_2O_3 、FeO、 Al_2O_3 、 SiO_2 等杂质)为原料制备锰酸锂的流程如图 所示。

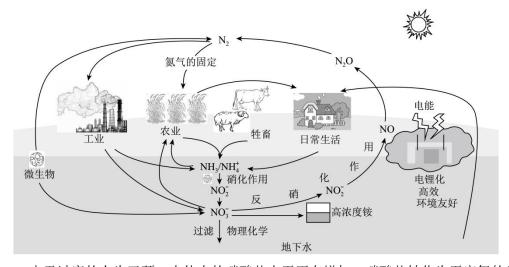
(5)为测定锰酸锂的纯度,取 2.00g 产品置于锥形瓶中,向其中加入 2.68gNa₂C₂O₄ 和足量硫酸,充分反应后,用 0.100mol·L·¹KMnO₄标准溶液滴定未反应完的 H_2 C₂O₄,到达滴定终点时消耗 KMnO₄标准溶液 20.00mL。已知:LiMn₂O₄— $\xrightarrow{Na_2C_2O_4+H_2SO_4}$ \longrightarrow Mn²⁺,则该产品中锰酸锂的质量分数是_____。[M(LiMn₂O₄)=181g•mol·¹,M(Na₂C₂O₄)=134g•mol·¹]

【答案】(5)90.5%

【解析】(5) KMnO4标准溶液滴定未反应完的 H₂C₂O₄, 化学方程式为

$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 = K_2SO_4 + 2MnSO_4 + 10CO_2 \uparrow + 8H_2O$$
,可知剩余的

$$n(H_2C_2O_4) = \frac{5}{2} \times 0.1 \times 20 \times 10^{-3} mol = 5.0 \times 10^{-3} mol$$
,据此可知与 LiMn₂O₄ 反应的 H₂C₂O₄ 含量为

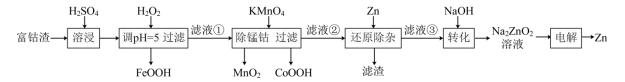

$$n(H_2C_2O_4) = \frac{2.68}{134} - 5.0 \times 10^{-3} mol = 0.015 mol$$
,LiMn₂O₄参与反应的化学方程式为

$$2LiMn_2O_4 + 3Na_2C_2O_4 + 8H_2SO_4 = 4MnSO_4 + 6CO_2 \uparrow + 8H_2O + Li_2SO_4 + 3Na_2SO_4 , \quad \boxed{1}$$

$$n(LiMn_2O_4) = \frac{2}{3} \times 0.015 mol = 0.010 mol$$
,故该产品中锰酸锂的质量分数是 $\frac{0.01 \times 181}{2.00} \times 100\% = 90.5\%$ 。

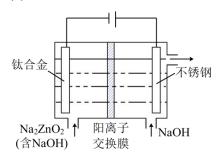
【微专题"陌生情境下"方程式的书写】

1. (2023·新疆乌鲁木齐·统考一模·节选)下图是氮在生态系统中的循环。细菌和电催化可促使含氮物质进行氧化还原反应。



(6)由于过度的人为干预,水体中的硝酸盐水平正在增加。硝酸盐转化为无害氮的反硝化作用,可以通过电催化法来实现,写出在中性介质中硝酸盐转化为氮气的阴极电极反应式____。

【答案】(6)2NO₃ +10e⁻+6H₂O = N₂↑ + 12OH⁻

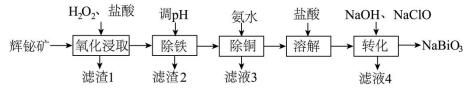

【解析】(6)在中性介质中 NO_3 在阴极得电子生成氮气,阴极电极反应式 $2NO_3$ + $10e^-+6H_2O=N_2\uparrow+12OH^-$ 。

2.(2023·四川绵阳·统考一模·节选)电解锌的生产过程中产生大量富钴渣,主要含金属 Zn、Cd 及 CoO、MnO 和 FeO。采用以下工艺可利用富钴渣生产高纯锌:

回答下列问题:

- (2)加入 H₂O₂ 后生成 FeOOH 的化学方程式为。
- (4)"除锰钴"中, 生成 MnO₂ 的离子方程式为____。
- (6)"电解"可通过如图装置实现。电解时、钛合金上的电极反应式为

【答案】(2)2FeSO₄+H₂O₂+2H₂O=2FeOOH↓+2H₂SO₄

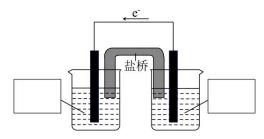

 $(4)3Mn^{2+}+2MnO_{4}^{-}+2H_{2}O=5MnO_{2}\downarrow+4H^{+}$

(6)ZnO $_{2}^{2-}$ +2e⁻+2H₂O=Zn+4OH⁻

【分析】富钴渣主要含金属 Zn、Cd Q CoO、MnO 和 FeO,加入硫酸酸浸,溶解,加入过氧化氢把 Fe^{2+} 氧化成 Fe^{3+} ,pH 调整到 5 生成 FeOOH 沉淀,过滤后加入高锰酸钾生成 MnO_2 和 CoOOH 沉淀过滤,加入 Zn除去溶液中的 Cd^{2+} ,过滤,加入氢氧化钠,把锌溶解生成 Na_2ZnO_2 ,电解生成单质 Zn,反应方程式为 $2Na_2ZnO_2+2H_2O=4NaOH+2Zn+O_2\uparrow$ 。

【解析】(2)加入 H₂O₂后, Fe²⁺被氧化生成 FeOOH 的化学方程式为 2FeSO₄+H₂O₂+2H₂O=2FeOOH↓+2H₂SO₄; 故答案为: 2FeSO₄+H₂O₂+2H₂O=2FeOOH↓+2H₂SO₄。

- (4) "除锰钴"中,高锰酸钾和 Mn²+反应生成 MnO₂,离子方程式为 3Mn²++2MnO¼+2H₂O=5MnO₂↓+4H+; 故答案为: 3Mn²++2MnO¼+2H₂O=5MnO₂↓+4H+。
- (6) 电解池中钛合金为阴极,发生还原反应,电极反应式为 $ZnO_2^{2^-}+2e^-+2H_2O=Zn+4OH^-$; 故答案为: $ZnO_2^{2^-}+2e^-+2H_2O=Zn+4OH^-$ 。
- 3.(2023·湖南常德·常德市一中校考模拟预测·节选)铋(Bi)的化合物广泛应用于电子、医药等领域。由辉铋矿(主要成分为 Bi_2S_3 ,含 FeS_2 、CuO、 SiO_2 等杂质)制备 $NaBiO_3$ 的工艺流程如下:

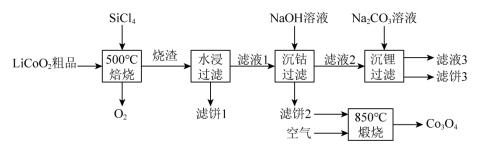


已知: i. Bi³+易水解。NaBiO₃难溶于冷水。

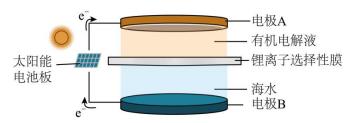
ii ii."氧化浸取"时,铋元素转化为Bi3+,硫元素转化为硫单质。

回答下列问题:

- (4)"转化"时, 生成 NaBiO₃ 的离子方程式为_____。
- (5)已知酸性环境下,NaBiO₃可以将 Mn²⁺氧化成 MnO₄(BiO₃被还原成 Bi³⁺)。请设计一个原电池装置来证明这一点,在下图中的两个方框内标出两烧杯溶液中溶质的化学式,并写出正极的电极反应式:_____。(左侧烧杯中已经加入了硫酸)


【答案】(4) $Na^+ + ClO^- + Bi^{3+} + 4OH^- = NaBiO_3 \downarrow + Cl^- + 2H_2O$

(5) NaBiO₃, MnSO₄; BiO₃⁻ +6H⁺ +2e⁻ = Bi³⁺ +3H₂O(\mathbf{R}) NaBiO₃+6H⁺ +2e⁻ = Na⁺ +Bi³⁺ +3H₂O

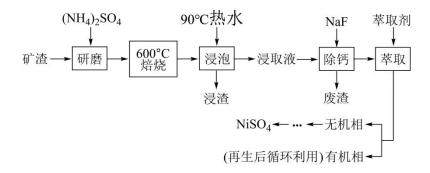

【分析】向辉铋矿(主要成分为 Bi_2S_3 ,含 FeS_2 、CuO、 SiO_2 等杂质)加盐酸、双氧水进行氧化浸取, Bi_2S_3 、 FeS_2 、CuO 转化为可溶性的盐和硫单质;由于 SiO_2 为不溶于水和盐酸的酸性氧化物,过滤则滤渣 1 的主要成分为 S 和 SiO_2 ;调节滤液 pH 值使 Fe^{3+} 转化成 $Fe(OH)_3$ 沉淀;再次过滤除去铁离子,向滤液中加过滤量复除铜;再次用盐酸溶解固体,用 NaOH、NaClO 沉淀铋,使其转化为 NaBiO $_3$ 沉淀,最后经系列操作得到 NaBiO $_3$ 。据此分析可得:

【解析】(4)"转化"时 NaOH、NaClO 与 Bi³⁺ 发生氧化还原反应生成难溶于冷水的 NaBiO₃,故答案为: Na⁺ +ClO⁻ +Bi³⁺ +4OH⁻ = NaBiO₃↓+Cl⁻ +2H Ω ;

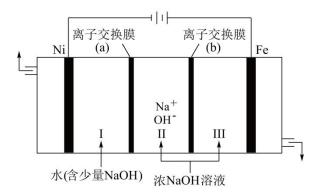
- (5) 酸性环境下,NaBiO₃ 可以将 Mn²⁺氧化成 MnO₄ (BiO₃ 被还原成 Bi³⁺),NaBiO₃ 为电源正极反应物;Mn²⁺ 为电源负极反应物,由于电子由右经导线流向左,所以左、右两方框内的物质分别为 NaBiO₃、MnSO₄;正极发生还原反应,即在酸性条件下 NaBiO₃ 得到电子被还原为 Bi³⁺,故答案为:NaBiO₃,MnSO₄; BiO₃ + 6H⁺ + 2e⁻ = Bi³⁺ + 3H₂O (或) NaBiO₃ + 6H⁺ + 2e⁻ = Na⁺ + Bi³⁺ + 3H₂O。
- 4.(2023·内蒙古赤峰·统考一模·节选)随着新能源汽车的发展,钾电池成为近些年来研究的热点、锂电池中一些金属的回收利用也是未来发展的一大方向。SiCl₄是生产多晶硅的副产物。可以利用 SiCl₄对废弃的钾电池正极材料 LiCoO₂ 进行氯化处理、进而回收 Li、Co 等金属,工艺路线如图所示:

- (3)"850℃煅烧"时的化学方程式为____。
- (4)利用碳酸锂(Li₂CO₃)与CoCO₃按 n(Li): n(Co)=1: 1 的比例配合, 然后在空气中于 700℃烧结可合成锂电池正极材料LiCoO₃,反应方程式为
- (5)海水中有丰富的锂资源,我国科学家研发出利用太阳能从海水中提取金属锂的技术,提取原理如图所示。金属锂在电极 (填"A"或"B")上生成,阳极产生两种气体单质、电极反应式是 。

【答案】(2)SiCl₄+3H₂O=H₂SiO₃↓+4HCl


- (3) $6\text{Co(OH)}_2 + \text{O}_2 = 2\text{Co}_3\text{O}_4 + 6\text{H}_2\text{O}$
- (4) $2\text{Li}_2\text{CO}_3 + 4\text{CoCO}_3 + O_2 \stackrel{700^{\circ}\text{C}}{=} 4\text{LiCoO}_2 + 6\text{CO}_2$
- (5)A $2Cl^{-}-2e^{-}=Cl_{2}\uparrow$, $2H_{2}O-4e^{-}=O_{2}\uparrow+4H^{+}$

【分析】"500℃焙烧"的烧渣是LiCl、CoCl₂和SiO₂的混合物,水浸除去SiO₂,滤液1中加氢氧化钠生成Co(OH)₂ 沉淀,过滤,"850℃煅烧"时Co(OH)₂和氧气反应生成Co₃O₄,滤液2加碳酸钠生成CoCO₃沉淀。


【解析】(2) SiCl₄发生水解生成硅酸沉淀和氯化氢,产生烟雾,反应的化学方程式为 SiCl₄+3 $H_2O=H_2SiO_3\downarrow$ +4 HCl_1 ;

- (3) "850℃ 煅烧"时 Co(OH)₂ 和氧气反应生成 Co₃O₄ 和水,反应的化学方程式为 6Co(OH)₂+O₂ = 2Co₃O₄+6H₂O;
- (4)利用碳酸锂(Li₂CO₃)与CoCO₃按 n(Li): n(Co)=1: 1 的比例配合,然后在空气中于 700℃烧结可合成锂电池正极材料 LiCoO₂, Co 元素化合价由+2 升高为+3,所以氧气参加反应,根据得失电子守恒,反应方程式为 2Li₂CO₃+4CoCO₃+O₂ = 4LiCoO₂ +6CO₂;
- (5) 根据电子流向,可知 A 是阴极、B 是阳极,Li⁺得电子发生还原反应生成金属 Li,金属锂在电极 A 上生成;海水中含有氯离子和氢氧根离子,阳极上氯离子和氢氧根离子放电生成氯气和氧气,电极反应式是 $2Cl^-2e^-=Cl_2\uparrow$ 、 $2H_2O^-4e^-=O_2\uparrow^+4H^+$ 。
- 5. (2023·云南昆明·统考二模·节选) NiSO4主要用于电镀工业,作为电镀镍和化学镍的主要原料,也用于生

产其他镍盐(如氧化镍、硫酸镍铵、碳酸镍等),从矿渣[含 NiFe₂O₄(铁酸镍)、NiO、FeO、CaO、SiO₂等]中回收 NiSO₄的工艺流程如图:

- 已知(NH₄)₂SO₄在 350℃分解生成 NH₃和 H₂SO₄,回答下列问题:
- (2)矿渣中部分 FeO 焙烧时与 H₂SO₄ 反应生成 Fe₂(SO₄)₃ 的化学方程式为 。
- (5)以 Fe、Ni 为电极制取 Na_2FeO_4 的原理如图所示。通电后,在铁电极附近生成紫红色的 FeO_4^{2-} ,若 pH 过高

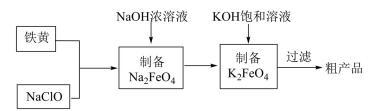
- ①电解时阳极的电极反应式为 , 离子交换膜(b)为 (填"阴"或"阳")离子交换膜。
- ②向铁电极区出现的红褐色物质中加入少量的 NaClO 溶液,沉淀溶解。该反应的离子方程式

为 _____。

【答案】(2)4FeO+6H₂SO₄+O₂=2Fe₂(SO₄)₃+6H₂O

【分析】某矿渣的主要成分是 NiFe₂O₄(铁酸镍)、NiO、FeO、CaO、SiO₂等,加入硫酸铵研磨后,600℃焙烧,已知: $(NH_4)_2SO_4$ 在 350℃以上会分解生成 NH_3 和 H_2SO_4 NiFe₂O₄在焙烧过程中生成 NiSO₄、Fe₂(SO₄)₃,在 90℃的热水中浸泡过滤得到浸出液,加入 NaF 除去钙离子,过滤得到滤液加入萃取剂得到无机相和有机相,无机相通过一系列操作得到硫酸镍,有机相循环使用,以此解答该题;

【解析】(2) 矿渣中部分 FeO 焙烧时与 H₂SO₄ 反应生成 Fe₂(SO₄)₃ 的化学方程式:


 $4\text{FeO}+6\text{H}_2\text{SO}_4+\text{O}_2=2\text{Fe}_2(\text{SO}_4)_3+6\text{H}_2\text{O};$

- (5) ①电解池中阳极发生氧化反应,依据题意可知铁在阳极失去电子,电极反应式为: Fe 6e $^-$ +8OH $^-$ =FeO $^{2-}_4$ +4H $_2$ O,离子交换膜(b))为阴离子交换膜;
- ②向铁电极区出现的红褐色物质中加入少量的 NaClO 溶液, 沉淀溶解: 2Fe(OH)3+3ClO +4OH =2 FeO +3ClO +3ClO +4OH =2 FeO +3ClO +3ClO +4OH =2 FeO +3ClO +3ClO +3ClO +3ClO +4OH =2 FeO +3ClO +3

+5H₂O;

B·拓展培优拿高分

1. $(2024 \cdot \text{广西·校联考一模})$ 高铁酸钾 $(K_2 \text{FeO}_4)$ 是一种新型、高效、无毒的水处理剂。工业上,利用廉价的铁黄(FeOOH)等为原料制备高铁酸钾。工艺流程如图:

下列说法错误的是

- A. 高铁酸钾在水处理过程中涉及氧化还原反应和盐类水解反应
- B. 制备 Na₂FeO₄ 反应中氧化剂和还原剂的物质的量之比为 2:3
- C. 根据流程可以判断相同温度下 K₂FeO₄ 的溶解度小于 Na₂FeO₄
- D. 若通过电解法以铁为原料制备高铁酸钾,铁棒应该做阳极

【答案】B

【分析】铁黄和次氯酸钠反应生成高铁酸钠,2FeOOH+3NaClO+4NaOH=2Na₂FeO₄+3NaCl+3H₂O,高铁酸钠在溶液中溶解度大于高铁酸钾,加入KOH,高铁酸钠在溶液中转化成高铁酸钾。

【解析】A. K_2FeO_4 具有强氧化性,可用于消毒杀菌,被还原为 Fe^{3+} , Fe^{3+} 发生盐类的水解生成 $Fe(OH)_3$,具有吸附性,可用于吸附水中的悬浮杂质,故 A 正确; B. 制备 Na_2FeO_4 反应

2FeOOH+3NaClO+4NaOH=2Na₂FeO₄+3NaCl+3H₂O,氯元素化合价降低,NaClO 是氧化剂,铁元素化合价升高,FeOOH 是还原剂,氧化剂和还原剂的物质的量之比为 3:2,故 B 错误;C. 向高铁酸钠溶液加入浓KOH 能生成高铁酸钾沉淀,可知相同温度下 K_2 FeO₄ 的溶解度小于 Na_2 FeO₄,故 C 正确;D. 若通过电解法以铁为原料制备高铁酸钾,铁元素化合价升高,在阳极反应,则铁棒应该做阳极,故 D 正确;故选 B。

- 2. (2023·河北邢台·统考模拟预测) 在分析化学上,测定含TiO²⁺酸性溶液中钛元素的含量通常涉及两个反应:
- I. 用 Al 粉还原 TiO^{2+} 得到 Ti^{3+} ; II. 用 $FeCl_3$ 溶液滴定,反应的离子方程式为 $Ti^{3+} + Fe^{3+} + H_2O = TiO^{2+} + Fe^{2+} + 2H^+ \ .$

下列说法错误的是

- A. 还原性: Al > Ti³⁺ > Fe²⁺
- B. 反应 I 中氧化产物和还原产物的物质的量之比为3:1
- C. 反应 II 的滴定实验可选用 KSCN 溶液作指示剂
- D. 反应 I 中生成 1mol Ti³⁺时消耗的 H⁺和反应 II 中消耗 1mol Ti³⁺时生成的 H⁺的量相同

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/59710213613
3006136