
• Reading Assignment: Bertsekas Sections 3.1 and 3.2
• Last Time:

• Conjugate Direction Methods
2. OPTIMIZATION OVER A CONVEX SET

• Necessary and Sufficient Conditions for Optimality
• Feasible Directions and the Gradient Projection Methods

• Today:
• Lagrange Multiplier Theory: Necessary Conditions for Equality 

Constraints
• The Lagrangian Relaxation Approach
• Sufficient Conditions and Sensitivity Analysis

• Next Time: Bertsekas Sections 3.3, 3.4, 4.3(?), and 5.1
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• Conjugate Direction Methods
– Making the best use of quadratic properties
xk+1 = xk + k dk, k obtained by line minimization
dk = -f(xk) + k dk-1, with

f (xk )f (xk )

f (xk−1)f (xk−1)
k =

f (xk−1)f (xk−1)
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= f (xk )(f (xk ) − f (xk−1))
• Conditions for Constrained Optimality

– f(x*)'(x - x*)  0  x  X
 Any feasible direction leads to increase in f(x) at least locally

• Feasible Directions and the Gradient Projection Methods
– Constraints are always satisfied ~ the Primal Approach
– If we are on the boundary, project negative gradient back onto the 

set of active constraints
– With k chosen by the Armijo rule or the limited minimization rule, 

every limit point of {xk} is stationary
– Convergence similar to the gradient method



Lagrange Multiplier Theory: Necessary 
Conditions for Equality Constraints

• A “dual” approach without requiring the constraints to be 
satis ss the iterations

• We shall first present intuitive ideas about necessary 
conditions, and follow up by more rigorous derivations

• A motivating example
Min x f(x), with f(x)  x1

2 + x2
2, subject to x1 + x2 = 1

x1

x2x1 + x2 = 1– What is the problem?
– What is the solution?
– How many methods are there to solve 

the problem?
– How do they work? Pros and cons?
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• Method 1: Graphical inspection
• Method 2: Direct substitution

x2 = 1- x1

f(x1,(1-x1)) = x1
2 + (1-x1)2 = 2x1

2 -2x1 + 1  F(x1)
 An unconstrained optimization
dF(x1)/dx1 = 0 = 4x1 - 2  x1

* = 0.5, x2
* = 1- 0.5 = 0.5

• Method 3: Gradient projection method

x1

x2x1 + x2 = 1

• Method 4: Lagrangian relaxation method
• Method 5: A two-level iterative LR approach
• These last two methods will be discussed later
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• The general problem formulation:
Minimize f(x), subject to

hi(x) = 0, i = 1, .., m,
gj(x)  0, j = 1, .., r.

Or, h(x) = 0 and g(x)  0
– Basic assumptions: f(x), hi(x) and gj(x)  C1

– Most times we shall start with h(x) = 0, then extend the 
results to include g(x)  0

• Previously we studied necessary and sufficient conditions, 
and developed numerical methods to solve the problem

• We will derive a different set of necessary and sufficient 
conditions based on Lagrangian relaxation, and present a 
series of methods to solve the problem

• We will start with the concept of tangent plane, and 
examine what conditions that x* has to satisfy
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Tangent Planes

h(x) = 0

x*

h(x*) x

x

• The problem:
Minimize f(x), subject to hi(x) = 0, i = 1, .., m

• What is a tangent plan at x*? How to characterize it?
V(x*): Tangent Plane
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• Tangent plane of h(x) = 0 at x*:
V(x*)  {x | hi(x*)' (x – x*) = 0, i = 1, .., m}
– It is characterized by and orthogonal to h(x*)
– It indicates possible directions of infinitesimal move along 

the active constraint(s), or the first order feasible 
variations
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