
f 06 – Linear Algebra Support Functions Introduction – f06

Chapter f06 – Linear Algebra Support Functions

1. Scope of the Chapter

This Chapter is concerned with basic linear algebra functions which perform elementary algebraic
operations involving vectors and matrices.

2. Background

All the functions in this chapter meet the specification of the Basic Linear Algebra Subprograms
(BLAS) in C as described in Datardina et al (1992). These in turn were derived from the pioneering
work of Dongarra et al (1988) and Dongarra et al (1990) on Fortran 77 BLAS. The functions
described are concerned with matrix-vector operations and matrix-matrix operations. These will
be referred to here as the Level-2 BLAS and Level-3 BLAS respectively. The terminology reflects
the number of operations involved. For example, a Level-2 function involves O(n2) operations for
an n by n matrix. The Level 1 Blas will be included at a future mark of the C Library.

Table 1.1 indicates the NAG code ming scheme for the functions in this Chapter.

Level-2 Level-3
’real’ BLAS function f06p_c f06y_c

’complex’ BLAS function f06s_c f06z_c

The C BLAS names for these functions are the same as the corresponding Fortran name cept
that they are in lower case.

The functions in this chapter do not have full function documents, but instead are covered by
general descriptions in Section 4 sufficient to enable their use. As this chapter is concerned only
with basic linear algebra operations, the functions will not normally be required by the general
user. The purpose of each function is indicated in Section 3 so that those users requiring these
functions to build specialist linear algebra modules can determine which functions are of interest.

3. References

Datardina S P, Du Croz J J, Hammarling S J and Pont M W (1992) A Proposed Specification of
BLAS Routines in C The Journal of C Language Translation 3 295–309.

Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An Extended Set of FORTRAN
Basic Linear Algebra Subprograms ACM Trans. Math. Softw. 14 1–32.

Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A Set of Level 3 Basic Linear
Algebra Subprograms ACM Trans. Math. Softw. 16 1–28.

4. Recommendations on Choice and Use of Functions

This section lists the functions in the categories Level-2 (matrix-vector) and Level-3 (matrix-
matrix). The corresponding BLAS name is indicated in brackets.

Within each section functions are listed in alphabetic order of the fifth character in the short
function name, so that corresponding real and complex functions may have adjacent entries.

4.1. The Level-2 Matrix-vector Functions

The Level-2 functions perform matrix-vector operations, such as forming the product between a
matrix and a vector.

[NP3275/5/pdf] 3.intro-f06.1

Introduction – f06 NAG C Library Manual

Compute a matrix-vector product; real general matrix dgemv (f06pac)

Compute a matrix-vector product; complex general matrix zgemv (f06sac)

Compute a matrix-vector product; real general band matrix dgbmv (f06pbc)

Compute a matrix-vector product; complex general band matrix zgbmv (f06sbc)

Compute a matrix-vector product; real symmetric matrix dsymv (f06pcc)

Compute a matrix-vector product; complex Hermitian matrix zhemv (f06scc)

Compute a matrix-vector product; real symmetric band matrix dsbmv (f06pdc)

Compute a matrix-vector product; complex Hermitian band matrix zhbmv (f06sdc)

Compute a matrix-vector product; real symmetric packed matrix dspmv (f06pec)

Compute a matrix-vector product; complex Hermitian packed matrix zhpmv (f06sec)

Compute a matrix-vector product; real triangular matrix dtrmv (f06pfc)

Compute a matrix-vector product; complex triangular matrix ztrmv (f06sfc)

Compute a matrix-vector product; real triangular band matrix dtbmv (f06pgc)

Compute a matrix-vector product; complex triangular band matrix ztbmv (f06sgc)

Compute a matrix-vector product; real triangular packed matrix dtpmv (f06phc)

Compute a matrix-vector product; complex triangular packed matrix ztpmv (f06shc)

Solve a system of equations; real triangular coefficient matrix dtrsv (f06pjc)

Solve a system of equations; complex triangular coefficient matrix ztrsv (f06sjc)

Solve a system of equations; real triangular band coefficient matrix dtbsv (f06pkc)

Solve a system of equations; complex triangular band coefficient matrix ztbsv (f06skc)

Solve a system of equations; real triangular packed coefficient matrix dtpsv (f06plc)

Solve a system of equations; complex triangular packed coefficient matrix ztpsv (f06slc)

Perform a rank-one update; real general matrix dger (f06pmc)

Perform a rank-one update; complex general matrix (unconjugated vector) zgeru (f06smc)

Perform a rank-one update; complex general matrix (conjugated vector) zgerc (f06snc)

Perform a rank-one update; real symmetric matrix dsyr (f06ppc)

Perform a rank-one update; complex Hermitian matrix zher (f06spc)

Perform a rank-one update; real symmetric packed matrix dspr (f06pqc)

Perform a rank-one update; complex Hermitian packed matrix zhpr (f06sqc)

Perform a rank-two update; real symmetric matrix dsyr2 (f06prc)

Perform a rank-two update; complex Hermitian matrix zher2 (f06src)

Perform a rank-two update; real symmetric packed matrix dspr2 (f06psc)

Perform a rank-two update; complex Hermitian packed matrix zhpr2 (f06ssc)

4.2. The Level-3 Matrix-matrix Functions

The Level-3 functions perform matrix-matrix operations, such as forming the product of two
matrices.

Compute a matrix-matrix product; two real rectangular matrices dgemm (f06yac)

Compute a matrix-matrix product; two complex rectangular matrices zgemm (f06zac)

Compute a matrix-matrix product; one real symmetric matrix, one real
rectangular matrix dsymm (f06ycc)

3.intro-f06.2 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

Compute a matrix-matrix product; one complex Hermitian matrix, one complex
rectangular matrix zhemm (f06zcc)

Compute a matrix-matrix product; one real triangular matrix, one real
rectangular matrix dtrmm (f06yfc)

Compute a matrix-matrix product; one complex triangular matrix, one complex
rectangular matrix ztrmm (f06zfc)

Solve a system of equations with multiple right-hand sides, real triangular
coefficient matrix dtrsm (f06yjc)

Solve a system of equations with multiple right-hand sides, complex triangular
coefficient matrix ztrsm (f06zjc)

Perform a rank-k update of a real symmetric matrix dsyrk (f06ypc)

Perform a rank-k update of a complex hermitian matrix zherk (f06zpc)

Perform a rank-2k update of a real symmetric matrix dsyr2k (f06yrc)

Perform a rank-2k update of a complex Hermitian matrix zher2k (f06zrc)

Compute a matrix-matrix product: one complex symmetric matrix, one complex
rectangular matrix zsymm (f06ztc)

Perform a rank-k update of a complex symmetric matrix zsyrk (f06zuc)

Perform a rank-2k update of a complex symmetric matrix zsyr2k (f06zwc)

5. Description of the f06 Functions

The argument lists use the following data types.
Integer: an integer data type of at least 32 bits.
double: the regular double precision floating-point type.
Complex: a double precision complex type.

plus the enumeration types given by

typedef enum { NoTranspose, Transpose, ConjugateTranspose } MatrixTranspose;
typedef enum { UpperTriangle, LowerTriangle } MatrixTriangle;
typedef enum { UnitTriangular, NotUnitTriangular } MatrixUnitTriangular;
typedef enum { LeftSide, RightSide } OperationSide;

In this section we describe the purpose of each function and give information on the argument lists,
where appropriate indicating their general nature. Usually the association between the function
arguments and the mathematical variables is obvious and in such cases a description of the argument
is omitted.

Within each section, the argument lists for all functions are presented, followed by the purpose of
the functions and information on the argument lists.

Within each section functions are listed in alphabetic order of the fifth character in the function
name, so that corresponding real and complex functions may have adjacent entries.

5.1. The Level-2 Matrix-vector Functions

The matrix-vector functions all have one array argument representing a matrix; usually this is a
two-dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments m and n for an m by n rectangular matrix;
and by the argument n for an n by n symmetric, Hermitian, or triangular matrix. Note that it
is permissible to call the functions with m or n = 0, in which case the function it immediately
without referencing their array arguments. For band matrices, the bandwidth is determined by the
arguments kl and ku for a rectangular matrix with kl sub-diagonals and ku super-diagonals; and
by the argument k for a symmetric, Hermitian, or triangular matrix with k sub-diagonals and/or
super-diagonals.

[NP3275/5/pdf] 3.intro-f06.3

Introduction – f06 NAG C Library Manual

The description of the m× n matrix consists either of the array name (a) followed by the trailing
(last) dimension of the array as declared in the calling (sub)program (tda), when the matrix is being
stored in a two-dimensional array; or the array name (ap) alone when the matrix is being stored
as a (packed) vector. In the former case the actual array must be allocated at least ((m− 1)d+ l)
contiguous elements, where d is the trailing dimension of the array, d ≥ l , and l = n for arrays
representing general, symmetric, Hermitian and triangular matrices, l = kl + ku + 1 for arrays
representing general band matrices and l = k + 1 for symmetric, Hermitian and triangular band
matrices. For one-dimensional arrays representing matrices (packed storage) the actual array must
contain at least 1

2n(n+ 1) elements.

The length of each vector, n, is represented by the argument n, and the routines may be called with
non-positive values of n, in which case the routine returns immediately.

In addition to the argument n, each vector argument also has an increment argument that
immediately follows the vector argument, and whose name consists of the three characters inc,
followed by the name of the vector. For example, a vector x will be represented by the two
arguments x, incx. The increment argument is the spacing (stride) in the array for which the
elements of the vector occur. For instance, if incx = 2, then the elements of x are in locations
x[0], x[2], . . . , x[2 ∗ n− 2] of the array x and the intermediate locations x[1], x[3], . . . , x[2 ∗ n− 3] are
not referenced.

Zero increments are not permitted. When incx > 0, the vector element xi is in the array element
x[(i− 1) ∗ incx], and when incx < 0 the elements are stored in the reverse order so that the vector
element xi is in the array element x[−(n−i)∗incx] and hence, in particular, the element xn is in x[0].
The declared length of the array x in the calling (sub)program must be at least (1+(n−1)∗ |incx|).

The arguments that specify options are enumeration arguments with the names trans, uplo and
diag. trans is used by the matrix-vector product functions as follows:

Value Meaning

NoTranspose Operate with the matrix

Transpose Operate with the transpose of the matrix

ConjugateTranspose Operate with the conjugate transpose of the matrix

In the real case the values Transpose and ConjugateTranspose have the same meaning.

uplo is used by the Hermitian, symmetric, and triangular matrix functions to specify whether the
upper or lower triangle is being referenced as follows:

Value Meaning

UpperTriangle Upper triangle

LowerTriangle Lower triangle

diag is used by the triangular matrix functions to specify whether or not the matrix is unit
triangular, as follows:

Value Meaning

UnitTriangular Unit triangular

NotUnitTriangular Non-unit triangular

When diag is d as UnitTriangular, the diagonal elements are not referenced.

5.1.1. Matrix storage schemes

Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a 2-dimensional
array A, with matrix element aij stored in array element A(i, j).

3.intro-f06.4 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of
the relevant triangle are stored; the remaining elements of the array need not be set. Such elements
are indicated by ∗ in the examples below. For example, when n = 4:

uplo Triangular matrix A Storage in array A

UpperTriangle




a11 a12 a13 a14

a22 a23 a24

a33 a34

a44




a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

LowerTriangle




a11

a21 a22

a31 a32 a33

a41 a42 a43 a44




a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗
a41 a42 a43 a44

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle
of the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the
remaining elements of the array need not be set. For example, when n = 4:

uplo Hermitian matrix A Storage in array A

UpperTriangle




a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44




a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

LowerTriangle




a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44




a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗
a41 a42 a43 a44

Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by rows in a 1-dimensional array.

- if uplo = UpperTriangle, aij is stored in ap[j − 1 + (2n− i)(i− 1)/2] for i ≤ j;

- if uplo = LowerTriangle, aij is stored in ap[j − 1 + i(i− 1)/2] for j ≤ i.

For example:

uplo Triangular matrix a Packed storage in array ap

UpperTriangle




a11 a12 a13 a14

a22 a23 a24

a33 a34

a44


 a11 a12 a13 a14� �	
 a22 a23 a24� �	
 a33 a34� �	
 a44��	

LowerTriangle




a11

a21 a22

a31 a32 a33

a41 a42 a43 a44


 a11��	
 a21 a22� �	
 a31 a32 a33� �	
 a41 a42 a43 a44� �	

[NP3275/5/pdf] 3.intro-f06.5

Introduction – f06 NAG C Library Manual

Note that for real symmetric matrices, packing the upper triangle by rows is equivalent to packing
the lower triangle by columns; packing the lower triangle by rows is equivalent to packing the upper
triangle by columns. (For complex Hermitian matrices, the only difference is that the off-diagonal
elements are conjugated.)

Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a
2-dimensional array with kl + ku + 1 columns and m rows. Rows of the matrix are stored in
corresponding rows of the array, and diagonals of the matrix are stored in columns of the array.

For example, when n = 5, kl = 2 and ku = 1:

Band Matrix a Band storage in array ab




a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55




∗ ∗ a11 a12

∗ a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 ∗

The elements marked ∗ in the upper left kl × kl triangle and lower right ku × ku of the array ab
need not be set, and are not referenced by the routines.

The following code fragment will transfer a band matrix A(m, n) from conventional storage to band
storage ab

for(i=0; i<m; ++i){
k+kl-i;
for (j=MAX(0,i-kl); j<=MIN(n-1,i+ku); ++j){

ab[i][k+j]=A[i][j];
}

}

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular, or
ku = 0 if lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper
or lower triangle (as specified by uplo) need be stored:

The following code fragments will transfer a symmetric or Hermitian matrix A(n, n) from
conventional storage to band storage ab

if uplo=UpperTriangle

for(i=0; i<n; ++i){
l=-i;
for (j=i; j<=MIN(n-1,i+k); ++j){

ab[i][l+j]=A[i][j];
}

}

if uplo=LowerTriangle

for(i=0; i<n; ++i){
l=k-i;
for (j=MAX(0,i-k); j<=i; ++j){

ab[i][l+j]=A[i][j];
}

}

For example, when n = 5 and k = 2:

3.intro-f06.6 [NP3275/5/pdf]

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/60621024111

4010212

https://d.book118.com/606210241114010212
https://d.book118.com/606210241114010212

