程序功能及性能简介

从静力学角度而言, CAESARII 具备如下计算功能:

- 涉及所有静力荷载,如管道自重、内外压力、温度、附加位移、预拉伸(冷紧)、 沉陷、集中荷载。
- 分类计算荷载,结果可以相互叠加。
- 可根据 WRC297 计算设备嘴子的刚度。
- 准确模拟各种形式的波纹膨胀节。
- 提供多种设计规范,如: ANSI B31.1、ANSI B31.3
- 可根据 WRC107 计算设备嘴子应力条件。
- 可验算设备嘴子受力条件。
- 可计算风荷载、地震荷载。
- 钢结构可与管道系统混合计算。

CAESARII 软件还具备相当优良的使用性能,突出表现在输入输出方面。工具条菜单 输入采用全屏幕填表方式,辅以求助信息、编辑命令和图形显示,使用户感到十分方便。 输出方面也很具特点,融入许多编辑命令,诸如翻页、查找、打印等,图形显示直观明 了。CAESARII 软件具备这样的性能就使得用户无需掌握太多 DOS 命令,也不必死记程 序操作步骤和数据输入格式。该程序在解题能力方面没有严格限制,只须保证有足够的 外存容量。

CAESARII 软件的配置要求:

- Intel Pentium Processor
- Mincrosoft Windows 95, 98, NT4.0 或更高)操作系统
- 32MB内存(推荐)
- 76MB 硬盘空间
- CD-ROM 驱动器

注: CAESARII 软件要求 800 X 600 分辨率(使用小字体)或 1024 X 768 分辨率(使用 大字体)。

第一章 程序安装

安装程序需要 Microsoft Win98, Win2000 或以上的操作环境。具体安装步骤如下:

1 把装有 CAESARII 软件的 CD 盘放入 CD-ROM 驱动器中,安装程序将自动开始。 如果这样的话,用户可跳过第 2 步。如果安装程序不能自动开始,用户应该手动完成以 下的步骤。

2 单击<开始>—<设置>—<控制面板>。从控制面板中选择<添加/删除程序>,出现添加/删除程序对话框,然后点击<安装>,开始安装程序。接着提示用户选择 一安装 CAESARII,也可通过选择<Browse>来改变安装 。

3 单击<下一步>,用户选择安装类型。缺省的选项为"安全安装"建议多数用户使用 这个选项。

4 单击<下一步>,用户选择语言类型。

5单击<下一步>,用户选择定义程序快捷方式的文件夹。

6 单击<下一步>,用户定义所使用的 ESL 颜色。

7单击<下一步>,CAESARII 安装开始。

一旦安装完成后, CAESARII 将进行 CRC 检查, 以证实所有的文件已经正确释放安装。

第二章 调用程序

以 CAESARII 程序已被装入硬盘 CAESAR 子 的情况下,用户调用该程序的步骤 如下:

1点击任务栏的<开始>按纽。

2指向<程序>,显示所有可用的程序。根据设置不同,也许需要搜索多级菜单。

3 当看到 CAESARII 时,单击 CAESARII 软件从而启动 CAESARII 软件,屏幕显示 CAESARII 程序主菜单,如图 3-1 所示。

图 3—1CAESARII Main Menr

注: 双击 CAESARII 快捷键(但必须注意此快捷键是 CAESARII 下的 C2.exe 文 件),也可启动 CAESARII 软件。

用户可以从菜单中选择文件 File),输入数据 Input),分析类型 Analysis),输出 结果 Output)等菜单。

所有的 CAESARII 分析都要求输入一个文件名,以便数据的输入,模型的分析和对所 定义的文件的输出绍果进行分析。

文件名用 File 菜单来定义,具体操作方法如下:

用户开始一个新的分析时,选择 File 菜单中的 New (或者单击 New 图标),输入一个 文件名和文件名所在的路径如图 3-2 所示。为了快速进入程序,用户应该输入文件名, 然后选择 Piping Input

6° fiping Inp	Conctural Inpu
Enter the data	42.544
D:\CII FOR PROSPECT\CAESARI	I granse

图 3—2New Job Name Specification

注意:选择 File 菜单中的 Open (或都单击 Open 图标)表明用户用一个对话框来选择 已存在的文件。经常使用的文件也可以从 File 菜单中的"Most Recently Used"中选择。 选择一个文件名并不能打开该文件,它仅表示可以对该文件进行输入,分析,结果评价 或进行其它的操作,但是用户仍需从菜单中选择这些操作。

第三章 建立模型

1 总 述

管道系统静力分析需要将诸如计算条件(温度、压力等)、管子材料特性(杨氏弹性 模量、线膨胀系数、基本许用应力等)、管子尺寸(直径、壁厚、长度)空间走向、约束 方式等作为基本数据输入。这些数据沿管道有所变化,在发生变化的地方设立节点,这 样,整个管系被划分成许多单元,每个单元由两个节点组成。CAESARII 4.0 采用逐个单 元输入的方法,单元的输入以填表的方式完成,该表格在程序中称为 Spreadsheet,一个 单元对应一页 Spreadsheet。调出 Spreadsheet 的具体操作步骤是:

1 进入 CAESARII 主菜单, 定义文件名(作法见第三章)。

2 选择主菜单 Input 中的 Piping, Piping-Input 表格式输入菜单—Spreadsheet 形式如 4
—1 所示。

1		
en: [2003 T∝ [2013 - □ Nette	Bend Freeken Rigd SFS1Test Expension/Jan Freeken	Allowable Stress
8 [350:000mm #	PRetrains Displacements Hargen Displacements Nozles	SC 137881.14 SH1 13793.14 F1
Cifata Isvata 1428 000	Forces/Monerte Forbernship and Forbern Leader Forbert For Weid/Wave	SH2 19030.14 F2 SH3 137930.14 F3 SH4 137930.14 F4
ArSich:(14.0000 (14.1) (12.5000 (16.1) (12.5000	Material TONICEEE	SHE 13295.14 F2 SHE 13295.14 F5 SH7 13295.14 F2
in the second se	Electer Medulate RD (200408-4003	SHE 737936.14 FE SHE 737936.14 FE
ne 1: [170.0007	Percent and the Tell	Se Pra
	Pipe Davids 0 0078 Rud Density	Fatgue Curves
Pare 2	Inclusion Density	

图 4—1Piping Input Spreadsheet

注意: 在选择 Input 之前应留意主菜单上的 Current jobname 是否是所要编辑的文件,执行 jobname 选择项可更换当前文件。

其中栏内提示符含义:

From	当前单元起始节点
То	当前单元终止节点
DX	当前单元在X方向上的投影
DY	当前单元在Y方向上的投影
DZ	当前单元在Z方向上的投影
Offsets	当前单元是否有偏差值,有则双击,然后输入有关数据
Diameter	当前单元管子直径
Wt/Sch	当前单元管子壁厚
Corrosion	当前单元管子腐蚀裕量
Insul Thk	当前单元保温层厚度
Temp 1	当前单元第一个计算温度
Temp2	当前单元第二个计算温度
Temp3	当前单元第三个计算温度
Pressure1	当前单元第一个计算压力
Pressure2	当前单元第二个计算压力
Bend	当前单元终止节点是否有弯管,有则双击,然后在现弯管定义栏
Rigid	当前单元是否是刚性元件,是则双击,然后出现刚性元件定义栏
Expansion Joint	当前单元是否是波纹膨胀节,是则双击,然后出现波纹膨胀节定义栏
	当前单元终止节点是否有应力增强件或三通,有则双击,然后出现
SIF&Tees	应力增强件或三通定义栏
Restraints	是否有约束,有则双击,然后出现约束定义栏
Displacements	是否有位移荷载,有则双击,然后出现位移荷载定义栏
Hangers	是否有弹簧支吊架,有则双击,然后出现弹簧支吊架定义栏
Nozzles	是否有管嘴,有则双击,然后出现管嘴定义栏
Forces/Moments	是否有集中荷载,有则双击,然后出现集中荷载定义栏
Uniform Loads	是否有分布荷载,有则双击,然后出现分布荷载定义栏
Wind	是否有风荷载,有则双击,然后出现风荷载定义栏
Material	当前单元材料序号
Allowable Stress	是否输入当前单元基本许用应力,是则双击,然后出现许用应力定义栏
Elastic Modulus	当前单元杨氏弹性模量
Poisson's Ratio	当前单元泊松比
Pipe Density	当前单元管子质量密度
Fluid Density	当前单元管内流体质量密度
Insulation	当前单元隔温层质量密度

文件加密 批运算 插入单元 整体坐标 节点增量 显示输入列表

7

按 Page Up 和 PageDown 键可上翻或下翻动 Spreadsheet

1.1 安装温度

程序中安装温度的缺省值是 21℃。此值可以修改,具体操作方法是:

1.在 Spreadsheet 下,点击Kaux 菜单下的Special Execution Parameters,调出Special Execution Parameters 子菜单。

2.移动光标至 Ambient Temperature 处,键入新安装温度。

1.2 计算温度

CAESARII软件允许定义三种计算温度,在 Spreadsheet 的 Temp1, Temp2, Temp3 处 输入,此处也可输入安装温度至计算温度和膨胀率。

1.3 计算压力

CAESARII 软件允许定义两种计算压力,在 Spreadsheet 的 Pressure 处输入。可以考虑 布尔登压力效应 Bourdon Pressure Effects),具体操作步骤是:

1.在Spreadsheet下,点击Kaux菜单下的Special Execution Parameters,调出Special Execution Parameters 子菜单。

2.移动光标至 Activate Bourdon 后填 1 或 2

1.4 管内流体密度

输入此值是为了计入流体的质量。当存在气液两相流体时,应输入平均密度。在 Spreadsheet 的 Fluid Density 处输入。

1.5 腐蚀裕量

CAESARII 认为腐蚀量降低管道承受持续荷载的能力,而并不啬管道柔性。此值在 Spreadsheet 的 Corrosion 处输入。

1.6 保温层

对保温层,输入厚度和质量密度,在 Spreadsheet 的 Insul 和 Insulation 处输入。

1.7 管材特性

管材特性包括杨氏弹性模量,泊松比,线膨胀系数,质量密度以及基本许用应力。 CAESARII 有多种材料的数据库,常用的八种材料是:

1-LOW CARBON STEEL	低碳钢
2-HIGH CARBON STEEL	高碳钢
3-CARBON MOLY STEEL	碳钼钢
4-LOW CHROME MOLY STEEL	低铬钼钢
5-MED CHROME MOLY STEEL	中铬钼钢
6-AUSTENITIC STAINLESS STEEL	奥氏体不锈钢
7-STRAIGHT CHROMIUM STEEL	纯铬钢
8-TYPE 310 STAINLESS STEEL	310 型不锈钢

选用某种材料时,在 Spreadsheet 的 Material 处输入序号,杨氏弹性模量、泊松比、 线膨胀系数、质量密度随之相应确定。

在 Spreadsheet 的 Allowable Stress 处双击出现基本许用应力输入栏如图 4-2 所示。

	SC [13	(855.14	R
HT:	137895.14	EI:	Г
12	187895.14	F2:	Г
4	137890.14	FR:	Г
14:	137835.14	FÆ	Г
HE:	137895.14	PE:	Г
HE	13785.14	FE:	Г
17:	137895.14	F7;	Г
-18	137695.14	FB:	Г
HS.	132895.14	FS:	Г
EH:		Fac	Г
Se:	_	PVst.	Г

图 4—2Allowable Stress

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/63814302012</u> <u>1006117</u>