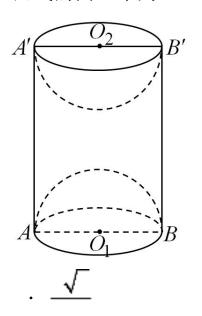

2023-2024 学年广东省广州市高考数学押题模拟试题 (二模)

【分析】先根据分层抽样求各层的人数,再根据平均数、方差的公式运算求解
【详解】由分层抽样可得高三()班抽取的人数为——,高三()班抽取的人
数为—— ,
设高三()班(人)答对题目数依次为,高三()班(人)答对题目数依
次为 ,
由题意可得:
,
可得 ,
则这 人答对题目的平均数一 ,
这一人答对题目的方差一
故选:
. 已知 , 若 与 的夹角为 ,则 在 上的投影向量为()
【正确答案】
【分析】根据投影向量的定义,结合向量数量积的运算律求 在 上的投影向量
【详解】 在 上的投影向量为 ()—,
\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
所以, 在 上的投影向量为————————————————————————————————————

【正确答案】

故选:

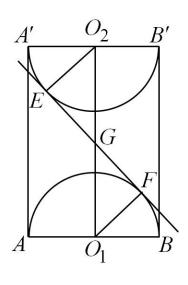
. 已知数列	为等比数列,	是函数	_		的极值
点,设等差数列	的前 项和为	, 若	,则(
. 或	•				
【正确答案】					
【分析】根据极	值点的定义可得	是		的两个实数根,	进而由等比以
及等差数列的性	:质,结合求和公式	尤即可求解			
【详解】由	_		得	,	
由题意可知	是	的两个	个实数根,		
所以 =	=	又	,		
所以	,因此				
故选:					
. 函数	———的图象	如图所示,	则 ()		
	\overline{x}				
)				
. ,	,		. ,	,	
. ,	, =		. ,	,	
【正确答案】					
【分析】由图象	分析函数奇偶性,	特殊位置,	及函数定义均		
【详解】由图象	观察可得函数图象	象关于 轴对	称,即函数为	7偶函数,	
所以 —	———	身: ,故	错误;		
由图象可知	- ,	故 错误;			


因为定义域不连续, 所以

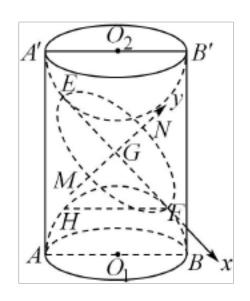
有两个根可得 ,即 、 异号, ,

即 错误, 正确

故选:


. 如图圆柱 的底面半径为 , 母线长为 , 以上下底面为大圆的半球在圆柱 内部, 现用一垂直于轴截面 的平面 去截圆柱 ,且与上下两半球相切,求截得的圆锥 曲线的离心率为())

【正确答案】


【分析】根据题意作出截面图,分析出平面 与底面夹角余弦值为-,再利用立体图形得到 ,再计算出 值得到离心率

【详解】作出截面图,显然平面 经过 中点,设中点为 ,切点分别为 , ,

半径为 , 则 , , , _ ,则 _, 作出

以下立体图,则平面 与底面夹角余弦值为一,

圆柱的底面半径为 椭圆的短轴 得

又 椭圆所在平面与圆柱底面所成角余弦值为-

以 为原点建立上图所示平面直角坐标系,

- — ,则椭圆标准方程为— ,

故选:

. 已知实数 , , , 满足——— —— , 则 , , 的大小关系是

()

•

.

【正确答案】

【分析】构造函数, 求导, 利用函数的单调性判断

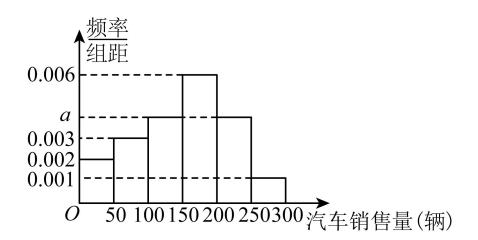
【详解】由题意, —— — ,

又 ——— , 即 ;

设 ,则 -,当 时, 单调递增,

时, ,

∀ — — — ...


设 — ,则 — ,当 时, 单调递减,

,

故选:

二、多选题

.下图是某汽车公司 家销售商 年新能源汽车销售数据频率分布直方图(单位:辆),则().

- . 的值为
- . 估计这 家销售商新能源汽车销量的平均数为
- . 估计这 家销售商新能源汽车销量的 分位数为
- . 若按分层抽样原则从这 家销售商抽取 家,则销量在 内的销售商应抽取 家

【正确答案】

【分析】 根据频率和为 , 计算 的值; 根据平均数公式, 判断 ; 根据百分位数公式, 判断 ; 计算销量在 , 内的频率, 再结合分层抽样, 即可判断

【详解】 由频率分布直方图可知,

得: ,故 正确;

,故

错误;

设 百分位数 , 易得

则

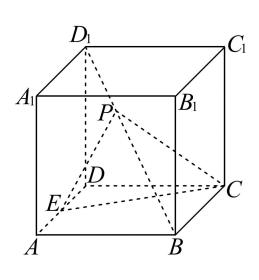
解得: ,故 正确;

则销量在的频率为

所以抽取的 家,则销量在 内的销售商为 一 家,故 正确

故选:				
. 己知事件	‡ , ,且 () 4() ,则()		
. 如果	, 那么 ()			
. 如果	, 那么 () 4			
. 如果 与	f 相互独立,那么 ()		
. 如果 与	,相互独立,那么 ()	4		
【正确答案】				
【分析】根据	居事件关系及运算有 ()	(), () (),由事件的相互独	由立知
() ())(),结合事件的运算求	(), (
【详解】:	由 ,则()() , 正确;		
: 由	,则()()	, ⁴ 正确;		
: 如果 与	i 相互独立,则()	()()		
()	() () ()	错误;		
:由 分析	T及事件关系知:		4 正确	
故选:				
. 若函数 f	$f(x) \sin x \cos x$	则 ()		
. 函数 f(x)	的一条对称轴为 $x = \frac{1}{4}$			
. 函数 f(x)	的一个对称中心为 $\frac{1}{4}$			
. 函数 f(x)	的最小正周期为一			
. 若函数 ($f(x)$ $f(x)$ $\frac{1}{4}$, 则 $f(x)$	的最大值为		
【正确答案】				
【分析】根据	居三角函数的同角关系和二	倍角的正、余弦名	公式化简可得 f(x) $\frac{1}{4}$ cos4x	4,结
合余弦函数的	的性质依次判断选项即可			
【详解】由题	题意得,			
f(x) sim x	cos4 x sin x cos x	sin xcos x	$-\sin x + \cos 4x + \frac{1}{4}$	
: 当 x _4 际	f , f x $\frac{1}{4}$ cos 4 $\frac{1}{4}$		— ,	

所以 -是函数 的一条对称轴,故 正确;


- : 由选项 分析可知 -, 所以点 不是函数 的对称点, 故 错误;
- : 由 -,知函数 的最小正周期为-,故 正确;
- : , 所以 , 故 正确

故选:

. 如图, 在棱长为 的正方体

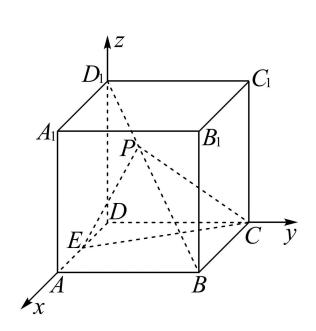
中, 为边 的中点,点 为线段 上

的动点,设 ,则()

. 当 -时, 平面

. 当 一时, │ ┃取得最小值, 其值为√

. | | | | | | | | | | | | | | √


. 当 平面 时, -

【正确答案】

【分析】建立空间直角坐标系,利用空间位置关系的向量证明判断 ;利用两点间距离公式 计算判断 ;确定直线 与平面 交点的位置判断 作答

【详解】在棱长为 的正方体

中,建立如图所示的空间直角坐标系,

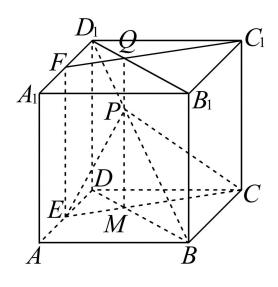
对于 , -, ---, 而

显然 ,即 是平面 的一个法向

量,

而 - - - ,因此 不平行于平面 ,即直线 与平面 不平行, 错误;

对于 , 则


$$\sqrt{}$$

因此当 一时, │ ┃取得最小值 √ , 正确;

对于 ,

取等号, 正确;

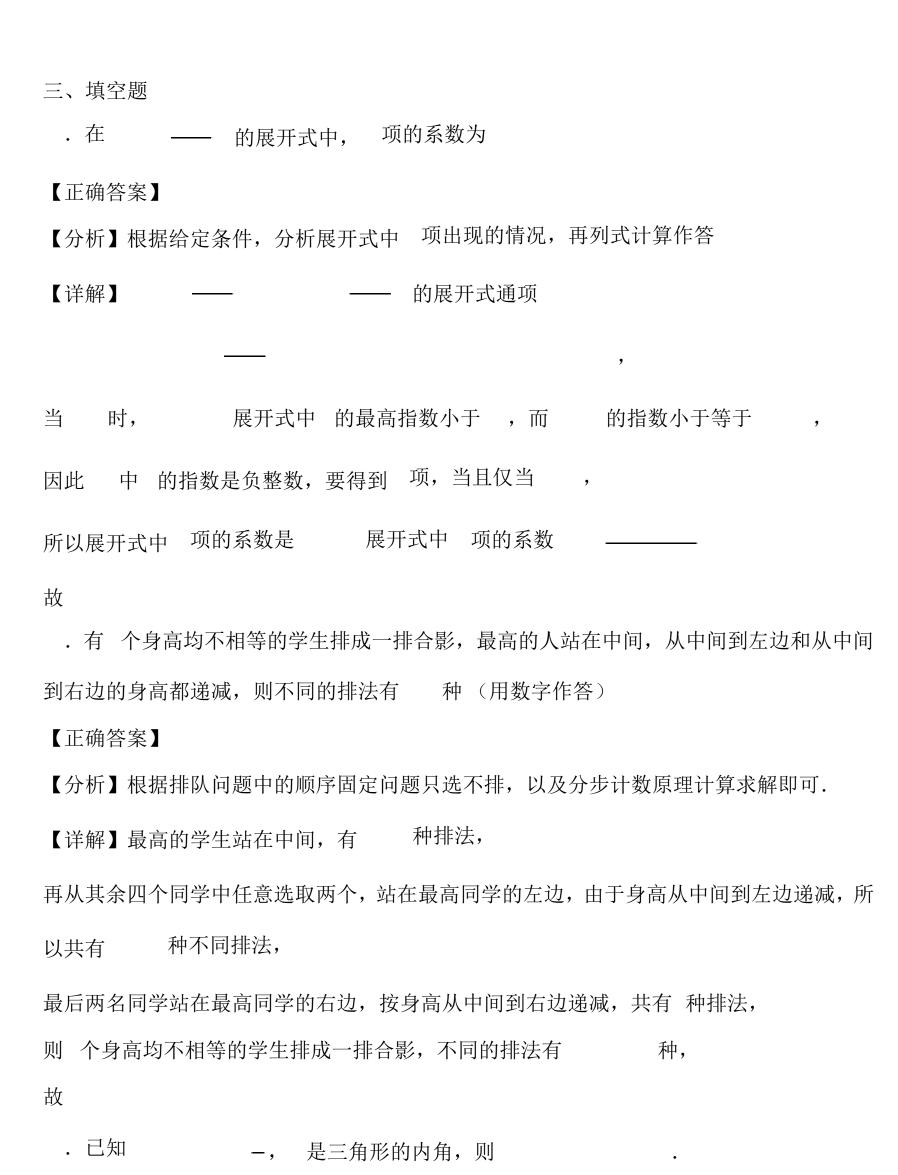
对于 , 取 的中点 , 连接 , 如图,

因为 为边 的中点,则 , 当 平面 时, 平面 ,

连接 , 连接 , 显然平面 平面 ,

因此 , 平面 ,则 平面 ,则 平面 ,则

即有 ,而— 一 一,所以 — 一 一,错误


故选:

关键点睛: 涉及空间图形中几条线段和最小的问题, 把相关线段所在的平面图形展开并放在

【正确答案】 —

【详解】由题设可得

填答案 一.

四、双空题

. 在平面上给定相异两点 , ,设点 在同一平面上且满足—— ,当 且 时, 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿 波罗尼斯圆 现有双曲线— — , 分别为双曲线的左 右焦点, , 为双 曲线虚轴的上 下端点, 动点 满足—— , 面积的最大值为 点 , 在双曲线 上,且关于原点 对称, 是双曲线上一点,直线 和 的斜率满足 ,则 ; 过 的直线与双曲线右支交于 , 两点 其中 点在第 双曲线方程是 分别为 \triangle 的内心,则 | 的克围是 一象限,设点 【正确答案】 ,根据—— ,求得 — — — ,结合 【分析】设 的最大面积得到 , 再根据 ,得出 _____,设边 上的切点 分别为 ,根据内心的性质,得到 轴,设直线 的倾斜角为 ,在 中, 得到 | — , 进而求得 | 的取值范围 【详解】设 ── ,可得| | | |,即√ — — ,可得圆心为 — ,半径 — , 所以 的最大面积为一 — ,解得 ,即 __ , ,则, 设 则— , 可得 — , 同理 — —

——, 则

则

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/64605504405
3010105