2024-01-15

5G移动网络新技术及核心网架构

汇报人:

contents

目录

- · 5G移动网络概述
- · 5G移动网络新技术
- ·5G核心网架构
- ·5G移动网络新技术应用案例
- ·5G核心网架构部署策略及挑战
- ・总结与展望

5G移动网络概述

5G定义

第五代移动通信技术,具有高速率、 低时延、大连接等特性。

发展趋势

5G将与人工智能、物联网等技术深度 融合,推动数字化、网络化、智能化 发展。

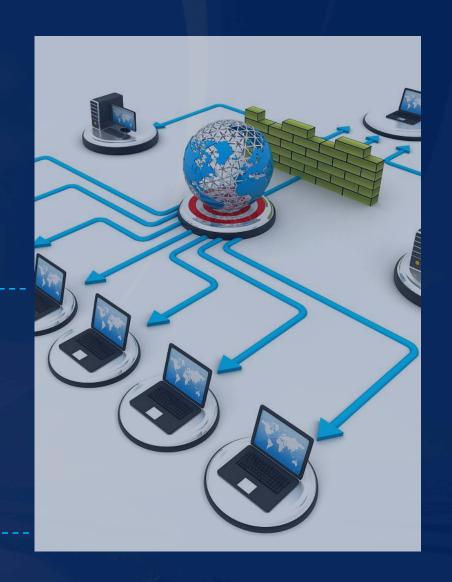
5G技术特点与优势

技术特点

采用新型空口技术、高频段通信、大 规模天线技术等,实现高速数据传输 和低时延通信。

优势

相比4G,5G具有更高的数据传输速率、 更低的时延、更大的连接数密度和更 高的移动性。


5G应用场景及市场需求

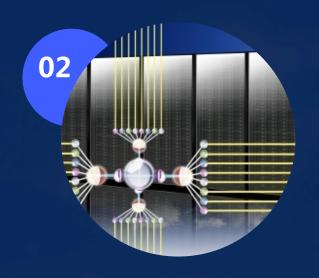
应用场景

5G将应用于智能制造、智慧城市、智慧交通、智慧医疗等领域,推动各行业数字化转型。

市场需求

5G将满足人们对高速、低时延通信的需求,提升用户体验,同时为企业提供更高效的数据传输和处理能力。

5G移动网络新技术



大规模天线技术

大规模多输入多输出技术,通过增加基站天线数量,提升系统容量和频谱效率。

Massive MIMO

波束赋形

利用大规模天线阵列实现 信号波束的定向传输,提 高信号覆盖范围和传输质 量。

空间复用

通过在不同用户间实现空间复用,提高系统整体吞吐量。

超密集组网技术

小区微型化

通过减小小区半径、增加小区数量,实现网络覆盖和容量的提升。

采用干扰协调、干扰消除等技术手段,降低超密集组网中的干扰问题。

03

01

虚拟化技术

通过虚拟化技术实现资源共享和动态调配,提高网络资源利用率。

非正交多址技术

突破传统正交多址技术的限制,实现更高频谱效率和系统容量。

2

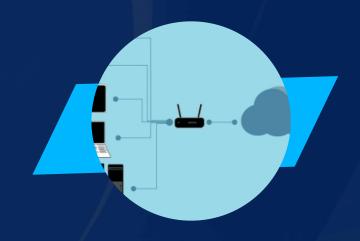
稀疏码分多址(SCMA)

通过稀疏扩频和码域复用,提高系统接入能力和抗干扰性能。

多用户共享接入(MUSA)

基于复数多元码及增强叠加编码的多用户共享接入技术,提升系统整体性能。

全双工通信技术


同时同频全双工

实现在同一频率上同时进 行收发操作,提高频谱效 率一倍以上。

自干扰消除

通过先进的干扰消除技术, 解决全双工通信中的自干 扰问题,保证通信质量。

灵活双工

根据实际需求灵活配置双 工模式,实现资源的最优 利用。

5G核心网架构

基于SDN/NFV的核心网架构

01

SDN (软件定义网络)

通过集中控制的方式,实现对网络流量的灵活调度和优化,提高网络的可扩展性和灵活性。

02

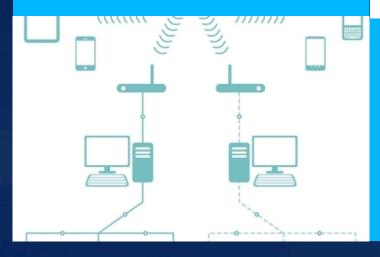
NFV(网络功能虚拟化)

将传统网络设备的功能通过虚拟化技术实现,降低设备成本,提高资源利用率。

03

基于SDN/NFV的核心网架构优势

实现网络功能的快速部署和灵活调整,提高网络的智能化和自动化水平。



控制与转发分离架构

控制平面与转发平面分离

将网络的控制逻辑与数据转发功能分离,实现更加灵活和高效的网络控制。

集中控制

通过集中控制器实现对整个网络的控制和管理,提高网络的可靠性和稳定性。

分布式转发

数据转发功能由分布式节点完成,提高网络的扩展性和性能。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/668017025045006076