
# 云南省昆明市禄劝彝族苗族自治县第一中学 2024 届数学高三上期末综合测试模拟试题 请考生注意:

- 1. 请用 2B 铅笔将选择题答案涂填在答题纸相应位置上,请用 0. 5 毫米及以上黑色字迹的钢笔或签字笔将主观题的答 案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
- 2. 答题前,认真阅读答题纸上的《注意事项》,按规定答题。
- 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 音乐,是用声音来展现美,给人以听觉上的享受,熔锛人们的美学趣味. 著名数学家傅立叶研究了乐声的本质,他 证明了所有的乐声都能用数学表达式来描述,它们是一些形如  $a \sin bx$  的简单正弦函数的和,其中频率最低的一项是 基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下 列函数中不能与函数  $y = 0.06 \sin 180000t$  构成乐音的是 (
- **A.**  $v = 0.02 \sin 360000t$

- **B.**  $v = 0.03 \sin 180000t$  **C.**  $v = 0.02 \sin 181800t$

**D.** 
$$y = 0.05 \sin 540000t$$

2. 有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各 边的中点.已知最底层正方体的棱长为 8,如果改形塔的最上层正方体的边长小于 1,那么该塔形中正方体的个数至少 是(



- A. 8
- B. 7
- D. 4
- $\int x + 2y 2 \ge 0$ 3. 已知实数x, y满足约束条件  $\begin{cases} x-2y+2 \ge 0 \end{cases}$ , 则  $x^2+y^2$  的取值范围是(
- **A.**  $\left| \frac{2\sqrt{5}}{5}, 2\sqrt{2} \right|$  **B.**  $\left[ \frac{4}{5}, 8 \right]$  **C.**  $\left[ \frac{2}{5}, 8 \right]$  **D.** [1, 8]

- 4. 已知向量 $_a$ 与向量 $_a$ =(4,6)平行, $_b$ =(-5,1),且 $_a$ - $_b$ =14,则 $_a$ =( )
- A. (4,6)

**B.** (-4,-6)

c.  $\left(\frac{2\sqrt{13}}{13}, \frac{3\sqrt{13}}{13}\right)$ 

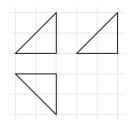
**D.**  $\left(-\frac{2\sqrt{13}}{13}, -\frac{3\sqrt{13}}{13}\right)$ 

5. 已知a, b 为两条不同直线,  $\alpha$ ,  $\beta$ ,  $\gamma$  为三个不同平面, 下列命题: ①若 $\alpha//\beta$ ,  $\alpha//\gamma$ , 则  $\beta//\gamma$ ; ②若

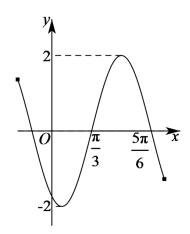
 $a//\alpha$ ,  $a//\beta$ , 则  $\alpha//\beta$ ; ③若  $\alpha \perp \gamma$ ,  $\beta \perp \gamma$ , 则  $\alpha \perp \beta$ ; ④ 若  $a \perp \alpha$ ,  $b \perp \alpha$ , 则 a//b.其中正确命题序号为(

- B. (2)(3)(4)
- C. (1)(4)
- D. (1)(2)(3)
- 6. 将函数  $f(x) = \sin(3x + \frac{\pi}{6})$  的图像向右平移 m(m>0) 个单位长度,再将图像上各点的横坐标伸长到原来的 6 倍(纵

坐标不变),得到函数 g(x) 的图像,若 g(x) 为奇函数,则 m 的最小值为 (


- B.  $\frac{2\pi}{9}$  C.  $\frac{\pi}{18}$  D.  $\frac{\pi}{24}$
- 7. 已知  $\sin(\pi + \alpha) = \frac{4}{5}$ , 且  $\sin 2\alpha < 0$ ,则  $\tan(\alpha \frac{\pi}{4})$ 的值为( )
- **A.** 7

- **B.** -7 **C.**  $\frac{1}{7}$  **D.**  $-\frac{1}{7}$
- 8. 已知 y = f(x) 是定义在 R 上的奇函数,且当 x > 0 时,  $f(x) = x + \frac{2}{x} 3$  . 若  $x \le 0$  ,则  $f(x) \le 0$  的解集是(
- **A.** [-2,-1]


**B.**  $(-\infty, -2] \cup [-1, 0]$ 

C.  $(-\infty, -2] \cup [-1, 0)$ 

- **D.**  $(-\infty, -2) \cup (-1, 0]$
- 9. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积(



- **A.**  $6 + 2\sqrt{3}$
- **B.**  $6+2\sqrt{2}$  **C.**  $4+4\sqrt{2}$  **D.**  $4+4\sqrt{3}$
- 10. 已知函数  $f(x) = 2\cos(\omega x + \varphi)(\omega > 0, 0 < \varphi \le \pi)$  的图象如图所示,则下列说法错误的是(



A. 函数 
$$f(x)$$
在 $\left[-\frac{17\pi}{12}, -\frac{11\pi}{12}\right]$ 上单调递减

B. 函数 
$$f(x)$$
在 $\left[\pi, \frac{3\pi}{2}\right]$ 上单调递增

C. 函数 
$$f(x)$$
 的对称中心是 $\left(\frac{k\pi}{2} - \frac{\pi}{6}, 0\right)(k \in Z)$ 

D. 函数 
$$f(x)$$
 的对称轴是  $x = \frac{k\pi}{2} - \frac{5\pi}{12} (k \in Z)$ 

- 11. 设 $S_n$  是等差数列 $\{a_n\}$ 的前n 项和,且 $S_4 = a_4 + 3$ ,则 $a_2 = ($  )
- **A.** −2
- **B.** -1
- C. 1
- D. 2
- 12. 设等比数列 $\{a_n\}$ 的前n项和为 $S_n$ ,则" $a_1 < 0$ "是" $S_{2021} < 0$ "的( )
- A. 充分不必要条件

B. 必要不充分条件

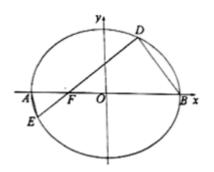
C. 充分必要条件

- D. 既不充分也不必要条件
- 二、填空题:本题共4小题,每小题5分,共20分。
- 13. 已知数列 $\{a_n\}$ 的前 n 项和为  $S_n$ ,向量 a = (4, -n),  $b = (S_n, n+3)$  .若  $a \perp b$ ,则数列 $\{\frac{1}{na_n}\}$ 前 2020 项和为\_\_\_\_\_
- 14. 设x、y满足约束条件  $\begin{cases} x+y-2 \le 0 \\ x-y+2 \ge 0 \end{cases}$ ,若 z=2x+y 的最小值是 -1,则 m 的值为 \_\_\_\_\_\_.
- 15. 等腰直角三角形 ABC 内有一点 P, PA=1,  $PB=\sqrt{2}$ , PC=2,  $\angle A=90^{\circ}$ , 则  $\Delta ABC$  面积为\_\_\_\_\_.
- 16. 在平面直角坐标系 xOy 中,双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a > 0, b > 0) 的左顶点为 A, 右焦点为 F, 过 F 作 x 轴的垂

线交双曲线于点 P, Q.若  $\triangle APQ$  为直角三角形,则该双曲线的离心率是 .

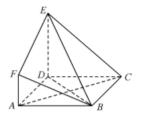
- 三、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (12分) 手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i) 若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为4级;(ii) 若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为8级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii) 若有2位或3位行家认为质量不过关,则该手工艺品质量为D

级.已知每一次质量把关中一件手工艺品被 1 位行家认为质量不过关的概率为  $\frac{1}{3}$ ,且各手工艺品质量是否过关相互独立.


- (1) 求一件手工艺品质量为 B 级的概率;
- (2)若一件手工艺品质量为 A, B, C 级均可外销,且利润分别为 900 元,600 元,300 元,质量为 D 级不能外销,利润记为 100 元.
- ①求 10 件手工艺品中不能外销的手工艺品最有可能是多少件;
- (2)记1件手工艺品的利润为X元,求X的分布列与期望.

18. (12 分) 已知函数 
$$f(x) = \tan x + a \sin 2x - 2x \left(0 \le x < \frac{\pi}{2}\right)$$
.

- (1) 若 a = 0, 求函数 f(x) 的单调区间;
- (2) 若  $f(x) \ge 0$  恒成立, 求实数 a 的取值范围.


19. (12 分) 已知函数 
$$f(x) = \frac{\sin x}{x}$$
,  $g(x) = x \cdot \cos x - \sin x$ .

- (I) 判断函数 g(x) 在区间 $(0,3\pi)$  上零点的个数,并证明;
- ( II )函数  $f\left(x\right)$  在区间  $\left(0,3\pi\right)$  上的极值点从小到大分别为  $x_{\rm l}$  ,  $x_{\rm 2}$  ,证明:  $f\left(x_{\rm l}\right)+f\left(x_{\rm 2}\right)<0$
- 20. (12 分) 在  $\triangle ABC$  中,角 A, B, C 所对的边分别为 a, b, c ,若 m = (a,b-c) ,  $n = (\sin A \sin B, \sin B + \sin C)$  , p = (1,2) ,且  $m \perp n$  .
- (1) 求角C的值:
- (2) 求 n·p 的最大值.
- 21. (12 分) 如图,在平面直角坐标系 xOy 中,已知椭圆 C:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  (a > b > 0)的离心率为 $\frac{1}{2}$ . 且经过点 $(1, \frac{3}{2})$ ,
- A, B 分别为椭圆 C 的左、右顶点,过左焦点 F 的直线 I 交椭圆 C 于 D, E 两点 (其中 D 在 x 轴上方).



- (1) 求椭圆 C 的标准方程;
- (2) 若 $\triangle AEF$  与 $\triangle BDF$  的面积之比为 1: 7, 求直线 I 的方程.

22. (10 分) 如图,四边形 ABCD 是边长为 3 的菱形,  $DE \perp$  平面 ABCD,  $AB \perp AD$ , AF / /DE, DE = 3AF.



- (1) 求证: AC ⊥平面 BDE;
- (2) 若 BE 与平面 ABCD 所成角为  $60^{\circ}$ , 求二面角 F BE D 的正弦值.

## 参考答案

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 、  $\mathbb C$ 

## 【解析】

由基本音的谐波的定义可得  $f_1=nf_2\ (n\in {\bf N}^*)$ ,利用  $f=\frac{1}{T}=\frac{\omega}{2\pi}$  可得  $\omega_1=n\omega_2\ (n\in {\bf N}^*)$ ,即可判断选项.

#### 【详解】

由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,

由 
$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
,可知若  $f_1 = nf_2$   $(n \in \mathbb{N}^*)$ ,则必有  $\omega_1 = n\omega_2$   $(n \in \mathbb{N}^*)$ ,

故选:C

#### 【点睛】

本题考查三角函数的周期与频率,考查理解分析能力.

2, A

#### 【解析】

则从下往上第二层正方体的棱长为:  $\sqrt{4^2+4^2}=4\sqrt{2}$ ,从下往上第三层正方体的棱长为:  $\sqrt{\left(2\sqrt{2}\right)^2+\left(2\sqrt{2}\right)^2}=4$ ,从下往上第四层正方体的棱长为:  $\sqrt{2^2+2^2}=2\sqrt{2}$ ,以此类推,能求出改形塔的最上层正方体的边长小于 1 时该塔形中正方体的个数的最小值的求法.

#### 【详解】

最底层正方体的棱长为8,

则从下往上第二层正方体的棱长为:  $\sqrt{4^2+4^2} = 4\sqrt{2}$ ,

从下往上第三层正方体的棱长为:  $\sqrt{\left(2\sqrt{2}\right)^2 + \left(2\sqrt{2}\right)^2} = 4$ ,

从下往上第四层正方体的棱长为:  $\sqrt{2^2+2^2} = 2\sqrt{2}$ ,

从下往上第五层正方体的棱长为:  $\sqrt{\left(\sqrt{2}\right)^2 + \left(\sqrt{2}\right)^2} = 2$ ,

从下往上第六层正方体的棱长为:  $\sqrt{1^2+1^2} = \sqrt{2}$ ,

从下往上第七层正方体的棱长为:  $\sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} = 1$ ,

从下往上第八层正方体的棱长为:  $\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{2}}{2}$ ,

::改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.

故选: A.

#### 【点睛】

本小题主要考查正方体有关计算,属于基础题.

3, B

#### 【解析】

画出可行域,根据可行域上的点到原点距离,求得 $x^2 + y^2$ 的取值范围.

## 【详解】

由约束条件作出可行域是由 A(2,0), B(0,1), C(2,2) 三点所围成的三角形及其内部,如图中阴影部分,而  $x^2+y^2$  可理解为可行域内的点到原点距离的平方,显然原点到 AB 所在的直线 x+2y-2=0 的距离是可行域内的点到原点距离的最小值,此时  $x^2+y^2=OD^2=\left(\frac{OA\cdot OB}{AB}\right)^2=\frac{4}{5}$ ,点 C 到原点的距离是可行域内的点到原点距离的最大值,此时  $x^2+y^2=2^2+2^2=8$  .所以  $x^2+y^2=2^2+2^2=8$  .所以  $x^2+y^2=2^2+2^2=8$  .所以  $x^2+y^2=2^2+2^2=8$  .所以  $x^2+y^2=2^2+2^2=8$  .所以  $x^2+y^2=2^2+2^2=8$  .

$$B$$
 $C$ 
 $A$ 
 $X$ 

故选: B

## 【点睛】

本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.

4, B

#### 【解析】

设 a = (x, y),根据题意得出关于  $x \times y$  的方程组,解出这两个未知数的值,即可得出向量 a 的坐标.

## 【详解】

设
$$\vec{a} = (x, y)$$
, 且 $\vec{m} = (4, 6)$ ,  $\vec{b} = (-5, 1)$ ,

由
$$a//m$$
 得  $6x = 4y$ ,即  $3x = 2y$ ,①,由 $a \cdot b = -5x + y = 14$ ,②,

所以 
$$\begin{cases} 3x = 2y \\ -5x + y = 14 \end{cases}$$
, 解得  $\begin{cases} x = -4 \\ y = -6 \end{cases}$ , 因此,  $a = (-4, -6)$ .

故选: B.

#### 【点睛】

本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题. 5、C

#### 【解析】

根据直线与平面,平面与平面的位置关系进行判断即可.

## 【详解】

根据面面平行的性质以及判定定理可得,若 $\alpha//\beta$ ,  $\alpha//\gamma$ , 则 $\beta//\gamma$ , 故①正确;

若 $a//\alpha$ ,  $a//\beta$ , 平面 $\alpha$ ,  $\beta$  可能相交, 故②错误;

若 $\alpha \perp \gamma$  ,  $\beta \perp \gamma$  , 则 $\alpha$  ,  $\beta$  可能平行, 故③错误;

由线面垂直的性质可得, 4)正确;

故选: C

## 【点睛】

本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.

6, C

## 【解析】

根据三角函数的变换规则表示出g(x),根据g(x)是奇函数,可得m的取值,再求其最小值.

#### 【详解】

解: 由题意知,将函数  $f(x) = \sin(3x + \frac{\pi}{6})$  的图像向右平移 m(m>0) 个单位长度,得  $y = \sin\left[3(x-m) + \frac{\pi}{6}\right]$ ,再将

 $y = \sin\left[3x - 3m + \frac{\pi}{6}\right]$  图像上各点的横坐标伸长到原来的 6 倍(纵坐标不变),得到函数 g(x) 的图像,

$$\therefore g(x) = \sin(\frac{1}{2}x - 3m + \frac{\pi}{6}),$$

因为g(x)是奇函数,

所以
$$-3m + \frac{\pi}{6} = k\pi, k \in \mathbb{Z}$$
,解得 $m = \frac{\pi}{18} - \frac{k\pi}{3}, k \in \mathbb{Z}$ ,

因为m > 0,所以m的最小值为 $\frac{\pi}{18}$ .

故选: C

## 【点睛】

本题考查三角函数的变换以及三角函数的性质,属于基础题.

7, A

## 【解析】

由  $\sin(\pi + \alpha) = \frac{4}{5}$  及  $\sin 2\alpha < 0$  得到  $\sin \alpha$  、  $\cos \alpha$  , 进一步得到  $\tan \alpha$  , 再利用两角差的正切公式计算即可.

## 【详解】

因为 $\sin(\pi + \alpha) = \frac{4}{5}$ ,所以 $\sin \alpha = -\frac{4}{5}$ ,又 $\sin 2\alpha = 2\sin \alpha\cos \alpha < 0$ ,所以 $\cos \alpha = \frac{3}{5}$ ,

$$\tan \alpha = -\frac{4}{3}$$
, Fight  $\tan \left(\alpha - \frac{\pi}{4}\right) = \frac{\tan \alpha - 1}{1 + \tan \alpha} = \frac{-1 - \frac{4}{3}}{1 - \frac{4}{3}} = 7$ .

故选: A.

#### 【点睛】

本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题. 8、B

#### 【解析】

利用函数奇偶性可求得 f(x) 在 x < 0 时的解析式和 f(0) , 进而构造出不等式求得结果

## 【详解】

Qf(x)为定义在R上的奇函数, f(0)=0.

当
$$x < 0$$
时, $-x > 0$ , $\therefore f(-x) = -x - \frac{2}{x} - 3$ ,

Q 
$$f(x)$$
 为奇函数,  $\therefore f(x) = -f(-x) = x + \frac{2}{x} + 3(x < 0)$ ,

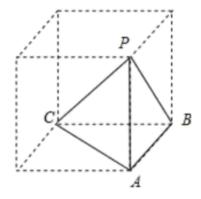
由 
$$\begin{cases} x < 0 \\ x + \frac{2}{x} + 3 \le 0 \end{cases}$$
 得:  $x \le -2$  或  $-1 \le x < 0$ ;

综上所述: 若 $x \le 0$ ,则 $f(x) \le 0$ 的解集为 $(-\infty, -2]$ U[-1, 0].

故选: B.

#### 【点腈】

本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在x=0处有意义时,f(0)=0的情况.


9, C

#### 【解析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.

## 【详解】

解:几何体的直观图如图,是正方体的一部分,P-ABC,



正方体的棱长为 2,

该几何体的表面积:

$$\frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 2 \sqrt{2} + \frac{1}{2} \times 2 \times 2 \sqrt{2} = 4 + 4\sqrt{2}.$$

故选 C.

## 【点睛】

本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.

10, B

#### 【解析】

根据图象求得函数 y = f(x) 的解析式,结合余弦函数的单调性与对称性逐项判断即可.

## 【详解】

由图象可得,函数的周期  $T=2 imes\left(rac{5\pi}{6}-rac{\pi}{3}
ight)=\pi$ ,所以  $\omega=rac{2\pi}{T}=2$  .

将点
$$\left(\frac{\pi}{3},0\right)$$
代入 $f(x)=2\cos\left(2x+\varphi\right)$ 中,得 $2\times\frac{\pi}{3}+\varphi=2k\pi-\frac{\pi}{2}\left(k\in Z\right)$ ,解得 $\varphi=2k\pi-\frac{7\pi}{6}\left(k\in Z\right)$ ,由

$$0 < \varphi \le \pi$$
,可得 $\varphi = \frac{5\pi}{6}$ ,所以 $f(x) = 2\cos\left(2x + \frac{5\pi}{6}\right)$ .

故函数 
$$y=f\left(x\right)$$
在  $\left[k\pi-\frac{5\pi}{12},k\pi+\frac{\pi}{12}\right]\left(k\in Z\right)$  上单调递减,

当 
$$k = -1$$
 时,函数  $y = f(x)$  在  $\left[ -\frac{17}{12}\pi, -\frac{11}{12}\pi \right]$  上单调递减,故 A 正确;

$$\diamondsuit 2k\pi - \pi \le 2x + \frac{5\pi}{6} \le 2k\pi \left(k \in Z\right), \quad \maltese k\pi - \frac{11\pi}{12} \le x \le k\pi - \frac{5\pi}{12} \left(k \in Z\right),$$

故函数 
$$y = f(x)$$
在  $\left[k\pi - \frac{11\pi}{12}, k\pi - \frac{5\pi}{12}\right](k \in \mathbb{Z})$ 上单调递增.

当 
$$k = 2$$
 时,函数  $y = f(x)$  在  $\left[\frac{13\pi}{12}, \frac{19\pi}{12}\right]$  上单调递增,故 B 错误;

$$\diamondsuit 2x + rac{5\pi}{6} = k\pi + rac{\pi}{2} \left( k \in Z 
ight)$$
,得  $x = rac{k\pi}{2} - rac{\pi}{6} \left( k \in Z 
ight)$ ,故函数  $y = f \left( x 
ight)$  的对称中心是 $\left( rac{k\pi}{2} - rac{\pi}{6}, 0 
ight) \left( k \in Z 
ight)$ ,故  $\mathbf{C}$ 

正确;

故选: B.

#### 【点睹】

本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.

11**、**C

#### 【解析】

利用等差数列的性质化简已知条件,求得 a2 的值.

## 【详解】

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/668053116040006051">https://d.book118.com/668053116040006051</a>