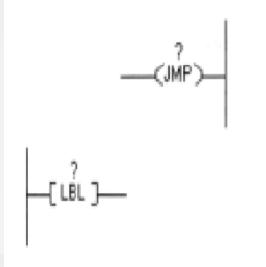
4.8 Program Control Instructions 程序控制指令:


- 1. JMP 跳转指令(跳转到指定标号)
- 2. LBL 跳转标号定义
- 3. JSR 子程序调用
- 4. SBR 子程序指令(需要传递数据)
- 5. RET 子程序返回
- 6. TND 暂停指令
- 7. MCR 主控指令
- 8. UID 使用户任务无效
- 9. UIE 使用户任务是能
- 10.AFI 使一个梯级无效
- 11.NOP 在程序中插入一个空操作

Jump to Label (JMP) Label (LBL)

跳转到标号指令(JMP) 标号 (LBL)

JMP 指令是一条输出指令。

LBL 指令是一条输入指令。

操作数

操作数:	数据类型:	格式:	说明:
JMP 指令			
标号名称		标号名称	输入相关的 LBL 指令名称
LBL 指令			
标号名称		标号名称	执行跳转到有相应参考标号
			名称的 LBL 指令

plc第四章系统指令

Jump to Label (JMP) Label (LBL)

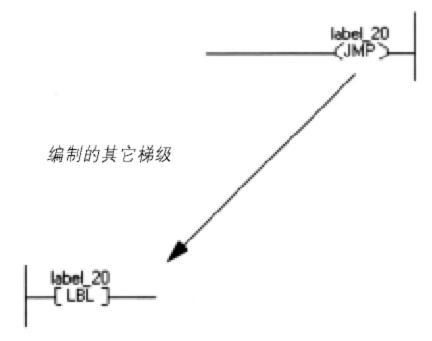
LBL 指令是具有同一标号名称的JMP 指令的跳转目标。 要确保 LBL 指令是其所在梯级的第一条指令。

在一个程序内标号名称必须是唯一的,标号名称可以是

- 最多可以有40个字符
- 可以包含字母,数字,和下划线(_)

执行

条件:	动作:
预扫描	梯级输出条件被设置为假。
梯级输入条件为假	梯级输出条件被设置为真。
梯级输入条件为真	梯级输出条件被设置为真。
	执行跳转到包含具有引用的标号名称的 LBL 指令的梯级。


算术状态标志: 不影响

故障条件:

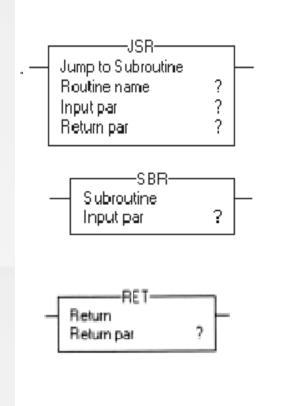
发生主要故障的条件:	故障类型:	故障代码:
标号和分类四章系统指令	4	42

Jump to Label (JMP) Label (LBL)

JMP/LBL 指令举例:

当 JMP 指令被使能时,指令跳过其下面的逻辑梯级,执行包含名称是 label_20 的 LBL 指令梯级的以后梯级。

Jump to Subroutine (JSR) Subroutine (SBR) Return (RET)


跳转到子程序指令 (JSR) 子程序指令 (SBR) 返回 (RET)

JSR 指令是一条输出指令。

SBR 指令是一条输出指令.

RET 指令是一条输出指令.

쓰는 보다 지난 표대

操作数:

操作数:	数据类型:	格式:	说明:
JSR 指令			
子程序名称	ROUTINE	名称	要执行的子程序
输入参数	SINT INT DINT REAL 结构体	立即数 标签 数组标签	传递到子程序的参数
返回参数 plc第四章系统	SINT INT DINT REAL 指語的体		从子程序接收的参数(0-n)

YY OF

Jump to Subroutine (JSR) Subroutine (SBR) Return (RET)

SBR 指令			
输入参数	SINT INT DINT REAL 结构体	标签 数组标签	从 JSR 指令接收的参数
RET 指令 返回参数	SINT INT DINT REAL 结构体	立即数 标签 数组标签	返回到 JSR 指令的参数

注意: 输入参数和与之匹配的返回参数必须是相同的数据类型,否则会出现不可预知的数据或发生危险操作。

Jump to Subroutine (JSR) Subroutine (SBR) Return (RET)

说明: JSR, SBR 和 RET 指令使逻辑执行转到程序中的独立的子程序, 对子程序进行一次扫描, 然后返回到程序的

转移点。

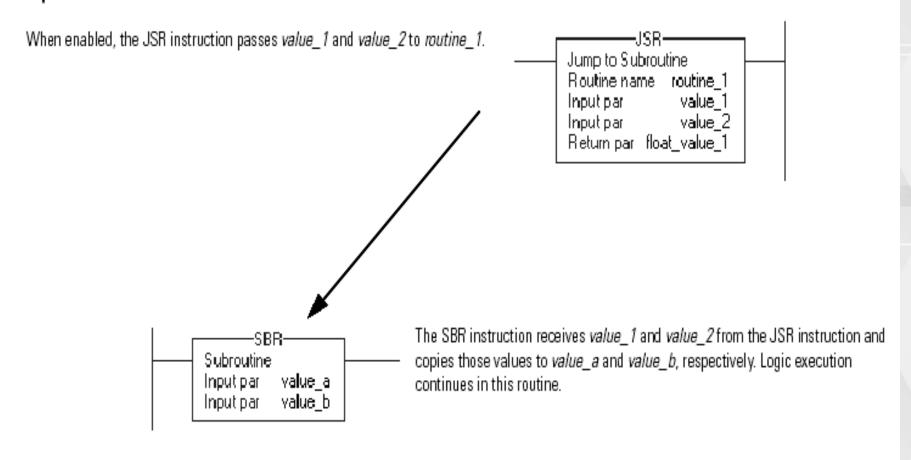
当指令被使能时, JSR指令使逻辑执行转到指定的子程序, 如果需要, 向子程序传递参数。如果没有输入参数, 则控制经由 JSR 指令进入子程序的第一梯级。

当指令被使能时,如果有输入参数,JSR指令传递它的输入参数,并使执行转到子程序的第一条梯级。SBR指令接收输入参数并复制这些数值到指定的标签。JSR指令输入参数的数量和数据类型需要与SBR指令相匹配。如果JSR指令输入参数的数量比相应的SBR指令的输入参数少,控制器出现主要错误。JSR指令的输入参数数量可以多于相关的SBR指令的输入参数,而不会发度的原则是第四章系统指令

说明:

- ▶当需要向子程序传递参数,需使用SBR指令
- > SBR指令确定存储输入参数的标签
- ➤ SBR指令必须是子程序的第一条指令
- ➤ SBR指令不能放在子程序中
- ▶JSR指令输入参数的数量和类型要和SBR指令匹配
- ▶当需要返回参数到JSR指令时,必须使用RET指令
- ▶RET指令返回后程序继续执行JSR指令的下一个梯级
- ▶RET指令返回的参数数量和类型要和JSR指令匹配
- ▶JSR指令传递参数需要额外的时间,必要时可以使用 控制器标签
- ▶可以传递单个数组元素、数组、结构体等,采用 COP指令相同的复制方法

Jump to Subroutine (JSR) Subroutine (SBR) Return (RET


对于用户可以使用的程序嵌套的层数,和传递或返回的 参数数量,只要控制器内存容量允许,就没有限制。 1层 2层 3层 子程序action_1 子程序 action_2 子程序 action_3 主程序 SBR action_1 action_3 action_2 RET

Jump to Subroutine (JSR) Subroutine (SBR) Return (RET

执行

条件: 动作: 预扫描 梯级输出条件被设置为假。 控制器执行所有子程序而与梯级条件无关,但是忽略RET指令。全部输入 参数都被传递到子程序内。全部返回参数被传递,但是RET指令不退出子 程序。这样子程序内的全部梯级都被预扫描。 如果对同一子程序存在递归调用,则子程序只有第一次被预扫描。如果对 同一子程序存在多重调用(非-递归),则子程序每次都被预扫描。 梯级输入条件为假 梯级输出条件被设置为假。 梯级输入条件为真 plc第四章系统指令

example 1

[other rungs of code]

When enabled, the RET instruction sends float_a to the JSR instruction. The JSR instruction receives float_a and copies the value to float_value_1. Logic execution continues with the next instruction following the JSR instruction. plc第四章系统指令

ex	ample 2	MainRoutine	
	When <i>abc</i> is o	on, subroutine_1 executes, calculates the number of cookies, and places a value in cookies_1.	
	abc ————————————————————————————————————	Ro	JSR————————————————————————————————————
·	Adds the value	e in cookies_1 to cookies_2 and stores the result in total_cookies.	
			ADD Add Source A cookies_2 0 ← Source B cookies_1 0 ← Dest total_cookies 0 ←
ı		Subroutine_1	
	When <i>def</i> is	on, the RET instruction returns value_1 to the JSR cookies_1 parameter and the rest of the su	broutine is not scanned.
-	def	off (previous rung) and <i>ghi</i> is on, the RET instruction returns <i>value_2</i> to the JSR <i>cookies_1</i> para	RET Return Return par value_1
	is not scann		meter and the rest of the subjudgine
-	ghi —] [——		RET————————————————————————————————————
1	When both a	def and ghi are off (previous rungs), the RET instruction returns value_3 to the JSR cookies_1 p	parameter.
L			RET————
		plc第四章系统指令	Return par value_3

如果abc 变为真,则JSR指令被使能,控制转移到subroutine_1。如果def 被使能,则RET 指令返回value_1到JSR指令的cookies_1参数内,子程序的其余部分不被扫描。如果ghi 被使能,则RET 指令返回value_2到JSR指令的cookies_1参数内,子程序的其余部分不被扫描。如果def 和ghi 都不被使能,则RET 指令返回value_3到JSR指令的cookies_1参数,子程序的其余部分不被扫描,然后 ADD 指令加 cookies_1的值到 cookies_2并存放结果于total cookies内。

其他格式:

格式:	句法:
neutral 文本	<pre>JSR (routine_name,input_1,input_n,return_1,return_n);</pre>
	<pre>SBR (routine_name,input_1,input_n);</pre>
	<pre>RET (return_1,return_n);</pre>
ASCII 文本	JSR routine_name input_1 input_n return_1 return_n
	SBR routine_name input_1 input_n
	RET return_n plc第四章系统指令return_n

Temporary End (TND)

暂停指令 (TND)

TND 指令是一条输出指令。

-(TND)-

操作数: 无

说明:

TND 指令可以作为一个分界线。

当指令被使能时,TND 指令使控制器程序只执行到该指令。

当指令被使能时, TND 指令担当程序的末尾。如果控制器扫描到一条 TND 指令,则控制器转移到当前程序的结束处。如果 TND 在一个子程序内,则控制返回到调用它的程序。如果 TND 指令在一个主程序内,则控制返回到当前任务的下一个程序。

plc第四章系统指令

Temporary End (TND)

	执行:	
条件:		动作:
預扫描		梯級输出条件被设置为假。
梯级输入条件为假		梯級输出条件被设置为假。
梯级输入条件为真		梯級输出条件被设置为真。
		终止执行当前程序。

算术状态标志: 不影响

故障条件: 无

TND 指令举例: 用户可以在调试或故障诊断时使用 TND 指令使程序执

行到一确定点。然后在程序内进一步移动 TND 指令到

用户调试程序的新部分。

当 TND 指令被使能时,控制器停止扫描当前程序。

其他格式:

格式:	句法:
neutral 文本	TND();
Aptid第四章系统指令	TND

Master Control Reset (MCR)

主控复位指令 (MCR)

MCR 指令是一条输出指令。

—(MCR)—

操作数: 无

说明: MCR 指令成对使用,用来创建一个程序区域,可以用

MCR 指令使该区域内的所有梯级无效。

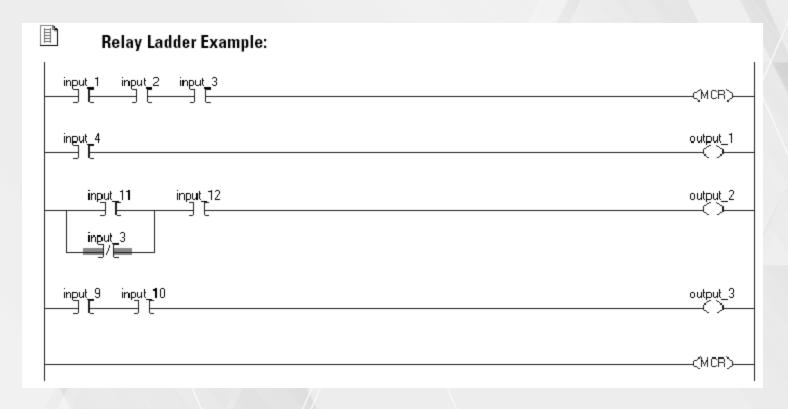
当 MCR 区域被使能时,在 MCR 区域内的梯级的为真或为假条件被正常扫描。当区域被禁止时,控制器仍扫描 MCR 区域内的梯级,但是因为在该区域内的所有输出被禁止,从而节省了扫描时间。

当 MCR 区域被禁止时,所有在 MCR 区域内的指令梯级输入条件都为假。

编制 MCR 区域程序时,应注意:

- 必须用一条无条件的 MCR 指令结束区域。
- 不能在 MCR 区域内嵌套另一个 MCR 区域。
- 不要跳转到MCR区域。如果该区域为假,则跳转到该 区域会激活从跳入点到区域结束的部分。
- 如果MCR区域持续到程序的末尾,则没必要在区域的 结束处编制一条 MCR 指令。

Master Control Reset (MCR)


重要:不能把 MCR 指令用作提供急停功能的硬件主控继电器的代用品。用户仍然需要安装硬件主控继电器,以提供紧急断开 I/O 电源的能力。

注意: 不要重叠或嵌套 MCR 区域。每个 MCR 区域必须是独立的而且是完整的。如果它们被重叠或嵌套,则可能会发生不可预料的机器运转,这样会造成设备损坏或人身伤害。

应该把重要操作编程在 MCR 区域之外。如果在 MCR 区域内起动诸如计时器等类似指令,则当区域被禁止时,指令停止执行而且计时器被清零。

Master Control Reset (MCR)

当第一条MCR指令被使能时 (input_1, input_2, 和 input_3 被置位), 控制器执行MCR区域内的梯级(两条MCR指令之间的), 并且根据输入条件置位或复位输出。

当第一条MCR指令被禁止时 (input_1, input_2, 和 input_3 不都被置位), 控制器执行MCR区域内的梯级(两条MCR指令之间的), 但是在 MCR区域内的所有梯级, 其输入条件都变为假, 而与实际输入条件无关。 plc第四章系统指令

User Interrupt Disable (UID)

禁止用户中断指令 (UID) UID 指令是一条输出指令。

-**⟨UID⟩-** 操作数: 无

说明: UID 指令临时禁止切换换用户任务。

如果 UID 指令被使能时则继续执行当前任务,而不能被高优先级的任务中断,除非执行 UIE 指令或到达程序的末尾。UID 指令不能禁止一个故障子程序或故障任务。

当指令被使能时, UID 指令增加内部计数器的数值, 只要计数器的值不为零, 当前正执行的任务就不会被中断。用户可以嵌套使用 UID 指令达 65,535 层。

执行:

条件: 动作:

User Interrupt Enable (UIE)

用户中断使能指令(UIE)

UIE 指令是一条输出指令。

-(UIE)-

操作数: 无

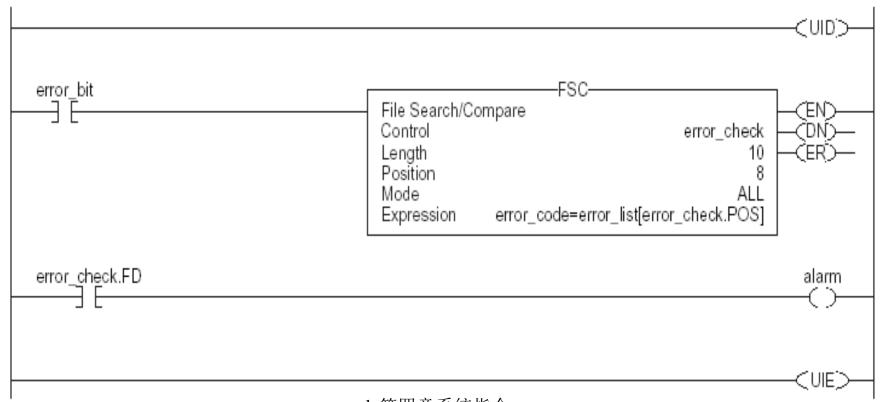
说明:

UIE 指令再使能用户任务之间切换。

如果 UIE 指令被使能且内部计数器的值大于零,则计数器的值减少。当计数器的值等于零时,当前执行的任务可以再次被中断。此时执行任何先前被禁止中断的高

优先级任务。

执行:


动作:
梯级输出条件被设置为假。
梯级输出条件被设置为假。
UID 内部计数器值减少。
如果内部计数器等于 0.则高优先级任务可以中断当前任务。
梯级输出条件被设置为真。 ple第四章系统指令

User Interrupt Enable (UIE)

Relay Ladder Example:

When an error occurs (error_bit is on), the FSC instruction checks the error code against a list of critical errors. If the FSC instruction finds that the error is critical (error_check.FD is on), an alarm is annunciated. The UID and UIE instructions prevent any other tasks from interrupting the error checking and alarming.

plc第四章系统指令

Always False Instruction (AFI)

恒假指令 (AFI) AFI 指令是一条输入指令。

-[AF] - 操作数: 无

说明: AFI 指令设置它的梯级输出条件为假。

执行:

条件: 动作:

预扫描 梯级输出条件被设置为假。

梯级输入条件为假梯级输入条件被设置为假。

梯级输入条件为真 梯级输出条件被设置为假。

算术状态标志: 不影响

故障条件: 无

AFI 指令举例: 当用户调试程序时, AFI 指令临时禁止一个梯级。

____ C AFI J___

当指令被使能时,Plc第四章系统指令 当指令被使能时,PFL指令案性在该梯级的所有指令。

No Operation (NOP)

空操作指令 (NOP)

NOP 指令是一条输入和输出指令。

操作数: 无

说明: NOP 指令的功能相当于占位符.

编程时可以放置 NOP 指令于梯级的任何地方。当指令被使能时 NOP 指令执行空操作。当指令被禁止时,

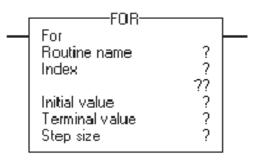
NOP 指令也执行空操作。

其他格式:

格式:	句法:
预扫描	梯级输出条件被设置为假。
梯级输入条件为假	梯级输出条件被设置为假。
梯级输入条件为真	梯级输出条件被设置为真。

算术状态标志: 不影响

故障条件: plc第四章系统指令


4.9 For/Break Instructions (FOR, BRK, RET)

FOR 重复执行子程序 BREAK 中止一个子程序的重复执行 RET 返回到 FOR指令

For 指令

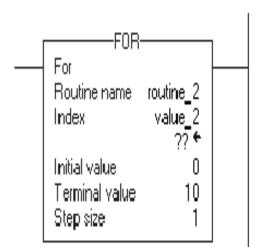
FOR 指令是一条输出指令。

操作数:

操作数:	数据类型:	格式:	说明:
子程序名称	ROUTINE	子程序名称	要执行的子程序
索引	DINT	标签	子程序已经执行的次数
初始值	SINT	立即数	索引的初始值
	INT	标签	
	DINT		
终止值	SINT	立即数	停止执行子程序的值
	INT	标签	
	DINT		
每步大小	SINT	立即数	每次 FOR 指令执行子程序时
	INT	标签	加到索引值的数量
	DINT		

说明: FOR 指令重复执行子程序。

当指令被使能时,FOR指令重复执行子程序,直到索引值超过终止值。该指令不向子程序传递参数。


每次 FOR 指令执行子程序时,它都把每步大小加到索引值。

注意不要在单次扫描循环太多次。重复次数太多可能会plc第四章系统指的看门狗超时,这会导致主要故障。

	执行:	
条件:		动作:
		预扫描梯级输出条件被设置为假。
		控制器执行一次子程序
		如果到同一子程序存在递归的FOR指令,则子程序只在第一次被预
		如果到同一子程序存在多条 FOR 指令(非 - 递归),则子程序每次i
		扫描。
梯级输入条件为假		梯级输出条件被设置为假。
4年 本	索引 < 终止 表 执行子程序 索引 = (索引 +	是 是 索引 ≥ 终止值 否 转 向 结束

Relay Ladder Example:

When enabled, the FOR instruction repeatedly executes *routine_2* and increments *value_2* by 1 each time. When *value_2* is > 10 or a BRK instruction is enabled, the FOR instruction no longer executes *routine_2*.

当指令被使能时,FOR 指令重复执行 routine_2,而且每次 value-2 的值都加 1。

当 $value_2 > 10$ 或一条 BRK 指令被使能时,FOR 指令不再执行 $routine_2$ 。

终止循环指令 (BRK)

BRK 指令是一条输出指令

操作数:

无

—(BRK)—

说明:

BRK 指令中断被 FOR 指令调用的子程序的执行。

当指令被使能时, BRK指令离开当前子程序并使控制器

返回到 FOR 指令的下一条指令。

如果存在嵌套的 FOR 指令,则 BRK 指令使控制返回到

FOR 指令的最内层。

执行:

条件:

动作:

预扫描 梯级输出条件被设置为假。 梯级输入条件为假 梯级输出条件被设置为假。 梯级输入条件为真 梯级输出条件被设置为真。 执行返回到用于调用的 FOR 指令的下一条指令。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/687010010011010001