吉林大学

本科生课程设计

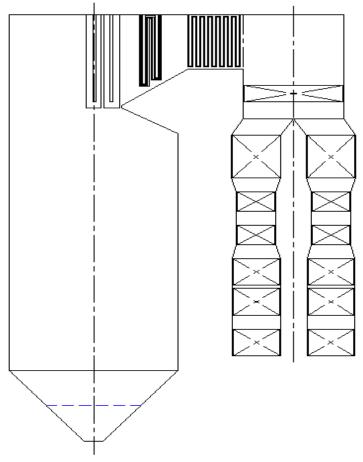
题目: 锅炉课程设计--26 题

学生姓名: ____刘泰秀 42101020

专业: 热能与动力工程(热能)

班 级: _____421010 班

一、设计任务


- 1.本次课程设计是一次虚拟锅炉设计,重要目旳是为了完毕一次完整旳热力计算。
- 2.根据所提供参照图纸,绘制 A0 图纸 2 张,其目的是为掌握经典锅炉的基本机构及工作原理。
- 3.以《锅炉课程设计指导书》为重要参照书,以《电站锅炉原理》、《锅炉设计手册》为辅助参照资料,进行设计计算。

二、题目规定

锅炉规范:

- 1.锅炉额定蒸发量 670t/h
- 2.给水温度: 222 ℃
- 3.过热蒸汽温度: 540 ℃、压力(表压) 9.8MPa
- 4.制粉系统:中间仓储式
- 5.燃烧方式: 四角切线圆燃烧
- 6.排渣方式: 固态
- 7.环境温度: 20 ℃
- 8.蒸汽流程: 指导书 4 页

三、锅炉构造简图

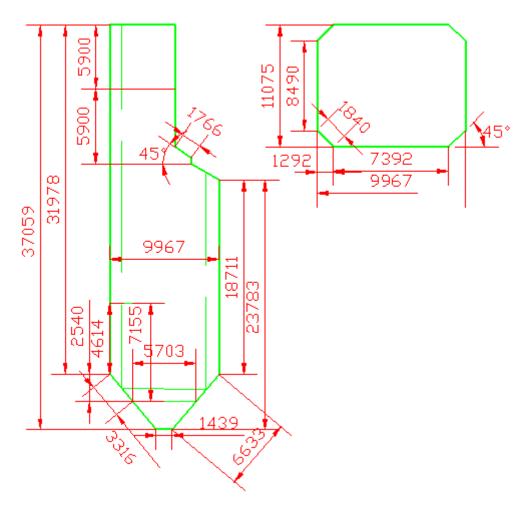
四、计算表格

设计煤种名称	Car	Har	Oar	Nar	Sar	Aar	Mar	Qar
枣庄甘霖井	56.90	3.64	2.25	0.88	0.31	28.31	7.71	22362

燃烧计算表

序号	项目名称	符号	单位	计算公式及数据	成果
1	理论空气量	VO	m3/kg	0. 0889*(Car+0. 375*Sar)+0. 265*Har- 0. 0333*0ar	5. 9584
2	理论氮容积	VON2	m3/kg	0.8*Nar/100+0.79*V0	4. 7142
3	R02容积	VRO2	m3/kg	1.866*Car/100+0.7*Sar/100	1. 0639
4	理论干烟气 容积	VOgy	m3/kg	VON2+VRO2	5. 7781
5	理论水蒸气 容积	V0H20	m3/kg	11.1*Har/100+1.24*Mar/100+1.61*dk *V0	0. 5956
6	飞灰含量	αfh		查表2-4	0.9

烟气特性表


				L) By G						
序号	项目名称	符号	単位	炉膛,屏 凝渣管	高过	低过	高温省煤器	高温空预器	低温省煤器	低温空预器
1	受热面入口过量空 气系数(查表1-5)	α'	_	1.200	1. 200	1. 225	1.250	1.270	1.320	1.340
2	受热面出口过量空气系 数(查表1-5)	α"	_	1.200	1. 225	1. 250	1. 270	1.320	1.340	1.390
3	烟道平均过量空气系数	αρϳ	_	1.200	1. 213	1.238	1.260	1. 295	1.330	1.365
4	干烟气容积 VOgy+(apj-1)*VO	Vgy	m3/kg	6. 970	7. 044	7.193	7. 327	7. 536	7. 744	7. 953
5	水蒸气容积 V0H2O+0.0161*(αpj-	VH20	m3/kg	0. 615	0.616	0.618	0.621	0.624	0. 627	0.631
6	烟道总容积 Vgy+VH20	Vy	m3/kg	7. 585	7. 660	7.812	7. 948	8.160	8. 372	8. 584
7	RO2容积份额 VRO2/Vy	rRO2	_	0.140	0.139	0.136	0.134	0.130	0.127	0.124
8	水蒸气容积份额 VH20/Vy	rH2O	_	0. 0811	0. 0804	0.0792	0. 0781	0.0765	0. 0749	0. 0735
9	三原子气体和水蒸气容 积份额 rR02+rH20	r	_	0. 2213	0. 2193	0. 2154	0. 2119	0. 2068	0. 2020	0.1974
10	容积飞灰浓度 10*Aar*αfh/Vy	μν	g/m3	33. 5932	33. 2614	32. 6169	32. 0578	31. 2253	30. 4349	29. 6836
11	烟气质量1- Aar/100+1.306*apj*V0	my	kg/kg	10.0549	10. 1522	10.3467	10. 5218	10.7942	11.0666	11. 3389
12	质量飞灰浓度 αfh*Aar/(100*my)	μy	kg/kg	0. 0253	0. 0251	0. 0246	0. 0242	0. 0236	0. 0230	0. 0225

锅炉热平衡及燃料消耗量计算

序号	名称	符号	单位	公式	成果
1	锅炉输入热量	Q r	kJ/kg	Qr≈ Qar,net	22362
2	排烟温度	θру	$^{\circ}$	先估后校	140
3	排烟焓	hpy	kJ/kg	查焓温表	1705. 44
4	冷空气温度	t1k	$^{\circ}$ C	取用	20
5	理论冷空气焓	h01k	kJ/kg	h01k=(ct)kV0	157. 81
6	化学未完全燃 烧损失	q3	%	取用	0.6
7	机械未完全燃 烧损失	q4	%	取用	1.5
8	排烟处过量空 气系数	а ру		低温空预器出口过量空气系数	1. 39
9	排烟损失	q2	%	(100-q4) (hpy- αpyh0lk)/Qr	6. 55
10	散热损失	q5	%	取用	0.5
11	灰渣损失	q6	%	式 (2-13)	0.00
12	锅炉总损失	∑q	%	q2+q3+q4+q5+q6	9. 15
13	锅炉热效率	η	%	100−∑q	90. 85
14	保热系数	φ		1-q5/(η+q5)	0. 995

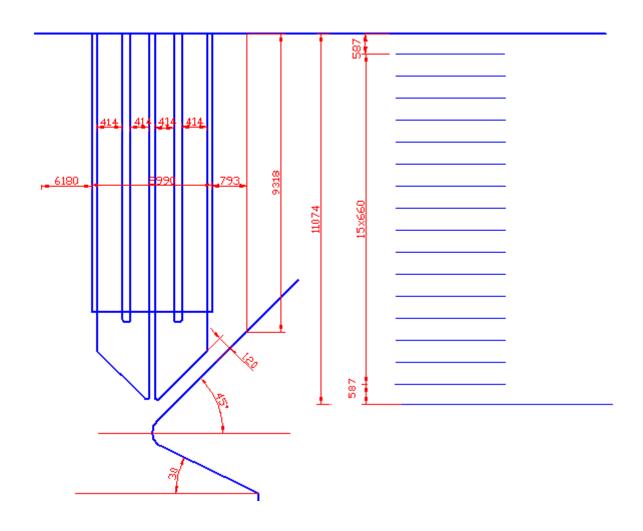
15	过热蒸汽焓	h″gg	kJ/kg	高温过热器出口参数(附表 B-7)	3476. 45
16	给水温度	tgs	$^{\circ}$ C	设计给定	222
17	给水焓	hgs	kJ/kg	低温省煤器入口参数(附表 B-7)	955. 693
18	锅炉实际负荷	D	kg/h	以额定负荷计算	670000
19	锅炉有效运用 热	A	kJ/h	Dgr(h"gg-hgs)	
20	实际燃料消耗 量	В	kg/h	100 *Q / (η * Qr)	83129. 09
21	计算燃料消耗 量	Вј	kg/h	B(1-q4/100)	81882. 15

炉膛构造简图

炉膛构造数据

序 号	名称	符号	单位	公式	成果
1	前墙总面积	Aq	m²	10. 67* (3. 316+5. 703/2) +31. 978*(8. 49+2*1. 84)	454. 98
2	侧墙总面积	2Ac	m²	$\begin{array}{c} A_{c1} = (9.\ 967 + 5703) *2.\ 54*0.\ 5 \\ A_{c2} = 7.\ 392 *18.\ 711 \\ A_{c3} = (7.\ 392 + (9.\ 967 - 1.\ 292 - 2.\ 538)) *1. \\ 465*0.\ 5 \\ A_{c4} = (9.\ 967 - 1.\ 292 - 2.\ 538) *0.\ 496 \\ A_{c5} = ((9.\ 967 - 1.\ 292 - 2.\ 538) + 4.\ 888) *0. \\ 86*0.\ 5 \\ A_{c6} = 10.\ 057*4.\ 888 \\ A_{c} = A_{c1} + A_{c2} + A_{c3} + A_{c4} + A_{c5} + A_{c6} \end{array}$	420
3	后墙总面积	Ah	m²	11. 075*((2. 012+1. 305) +5. 703/2) +18 . 711*(8. 49+2*1. 827) +11. 075*2. 93	327. 94
4		Аус	m²		12

	喷燃器及门 孔面积				
5	炉顶面积	Ald	m²	(4. 888+1. 292) *11. 075-2*0. 5*1. 292* 1. 292	66. 76
6	炉膛与屏交 界面积	A2	m²	(10. 056+0. 324+0. 496)*11. 075	136. 4
7	炉墙总面积	A1	m²	Aq+2Ac+Ah+A1d+A2	1406.08
8	炉膛截面面 积	AA	m²	2*2	121. 2
9	水冷壁管外 径	d	mm		60
10	水冷壁管节 距	S	mm		64
11	管子至墙中 心距	е	mm		0
12	水冷壁角系 数	Xs1			0. 98
13	炉顶角系数	Xld			0.98
14	出口烟窗角 系数	Хус			1
15	炉膛容积	V1	m³	Ac*11. 075*(11. 075+8. 49)*1. 292*0. 5 *(31. 978+18. 711)	3157. 8
16	冷灰斗二等 分平面到出 口烟窗中心 线的距离	H1	m		28. 62
17	冷灰斗二等 分平面到炉 顶旳距离	Н0	m		34. 52
18	冷灰斗二等 分平面到燃 烧器中心线 旳距离	Hr	m		7. 16
19	炉膛总有效 辐射受热面	Alz	m²	0. 98x (A1-A2-Ayc) +A2	1368. 93
20	炉膛水冷程 度	X		Alz/Al	0. 97
21	炉膛有效辐 射层厚度	S	m	3. 6*V1/A1	8. 08


炉膛热力计算

序号	名称	符号	单位	公式	结果
1	炉膛出口过量空气系数	$\alpha_{l}^{"}$		查表1-5漏风系数和过量空气系数	1.20
2	炉膛漏风系数	$\Delta \alpha_1$		查表1-5漏风系数和过量空气系数	0.05
3	制粉系统漏风系数	$\Delta lpha_{zf}$		查表1-5漏风系数和过量空气系数	0.10
4	热风温度	trk	r	先估后较(参考表3-3)	280.00
5	理论热风焓	h _{rk} 0	kJ/kg	查焓温表	2236. 93
6	理论冷风焓	h _{1k} 0	kJ/kg	查表2-14锅炉热平衡及燃料耗量计算	157. 81
7	空气带入炉膛热量	Q_k	kJ/kg	$(\alpha^*_l - \Delta \alpha_l - \Delta \alpha_{zf}) h^o_{rk} + (\Delta \alpha_l + \Delta \alpha_{zf}) h_{lk}^0$	2372. 45
8	对应每千克燃料送入炉膛热量	Q ₁	kJ/kg	$\frac{Q_r(1 - \frac{q_3 + q_6}{100 - q_4}) + Q_k}{2}$	24598.12
9	理论燃烧温度	\mathcal{G}_{0}	r	查温焓表	1900.18
10	理论燃烧绝对温度	T0	r	$\mathcal{G}_0 + 273$	2173.18
11	火焰中心相对高度系数	Х	K	$\left[\frac{\frac{h}{r}}{H_1} + \Delta x\right]$	0. 35
12	系数M	М		A-BX 注A、B取值查表3-5、表3-6	0.42
13	炉膛出口烟气温度	g_1^*	r	先估后较 注: $T_1^{"}=9_1^{"}+273$	1050.00
14	炉膛出口烟气焓	h_{gl}	kJ/kg		13219. 43
15	烟气平均热容量	V _c	kJ/(kg°C)	$(\mathcal{Q}_{_{\! 1}} \! - \! h_{_{\! \mathcal{B}^{'}}}^{^{*}}) / (\mathcal{G}_{_{\! 0}} \! - \! \mathcal{G}_{_{\! 1}}^{^{*}})$	13. 38
16	水冷壁污染系数	Š _{sl}			0.45
17	水冷壁角系数	X _{s1}		查表E9炉膛结果数据	0. 98
18	水冷壁有效系数	$\psi_{\scriptscriptstyle sl}$		$\zeta_{zl}X_{zl}$	0.44
19	屏、炉交界面的污染系数	Š,x		$\beta \xi_{zi}(\beta = 0.98)$	0.44
20	屏、炉交界面的角系数	Xyc		取用	1.00
21	屏、炉交界面的热有效系数	ψ_{yc}		$\zeta_{,w}X_{,w}$	0.44
22	燃烧器及门孔的热有效系数	ψ_r		未敷设水冷壁	0.00
23	平均热有效系数	$\psi_{_{pj}}$		$\frac{\psi_{zi}A + \psi_{yx}A_2 + \psi_r A_{yx}}{A_1}$ $A = A_q + 2A_c + A_h + A_{td} - A_{yx}$	0.44
24	炉膛有效辐射层厚度	s	m	查表E9炉膛结构数据	8. 08
25	炉膛内压力	р	Mpa		0.10
26	水蒸气容积份额	r _{H2} O		查表2-9烟气特性表	0.08
27	三原子气体和水蒸气容积总份额	r		查表2-9烟气特性表	0. 22
28	三原子气体辐射减弱系数	Kq	1/(m*Mpa)	$10.2*(\frac{0.78+1.6r_{H,0}}{\sqrt{10.2rps}}-0.1)(1-0.37\frac{T_1^*}{1000})$	2. 99
29	烟气质量飞灰浓度	μ_{y}	kg/kg	查表2-9烟气特性表	0.03
30	灰粒平均直径	d_h	μm	查附录B-1筒式钢球磨煤机	13.00
31	灰粒辐射减弱系数	K _h	1/(m*Mpa)	$\frac{55900}{\sqrt[3]{T_1^*^2d_h^2}}d_k$ 单位为 μ m	83. 90
32	燃料种类修正系数	x ₁		烟煤取X ₁ =0.5	0.50

33	燃烧方法修正系数	x ₂		对室燃炉x2=0.1 对层燃炉x2=0.03	0.10
34	煤粉火焰辐射减弱系数	k	1/(m*Mpa)	$k_q r + k_h \mu_y + 10 x_1 x_2$	3. 98
35	火焰黑度	a _h		$1-e^{-kpx}$	0.96
36	炉膛黑度	a ₁		$\frac{a_h}{a_h + (1 - a_h)\psi_A}$	0. 98
37	炉膛出口烟气温度(计算值)	\mathcal{G}_{1}^{*}	ű	$\frac{T_0}{M(\frac{3600\sigma_0 a_1 \psi_{B} A_1 T_0^3}{\varphi B_j V_c})^{0.6} + 1} - 273$ $\sigma_0 = 5.67 * 10^{-11} W / (m^2 . K^4) B_s $	1048. 05
38	计算误差	Δθ	c	<i>ŷ</i> ¹₁- <i>ŷ</i> ¹₁(估) (允许误差±100°C)	-1.95
39	炉膛出口烟气焓	h_{yl}	KJ/kg	查焓温表,按计算值	12531.31
40	炉膛有效辐射放热量	Q ₁ ^f	KJ/kg	$arphi(Q_{_{\! 1}}-h_{_{\! y^{_{\! 1}}}}^{})$	12000.76
41	辐射受热面平均热负荷	q_s	MW/m2	$B_{j} * Q_{i}^{f} / (3.6 * A_{LZ})$	0. 20
42	炉膛截面热强度	qA	MW/m2	$B_j^* Q_r / (3.6 * A_A)$	4. 20
43	炉膛容积热强度	Qγ	MW/m3	$B_j *Q_r / (3.6*V_1)$	0.16
	1				

顶棚热力计算

序号	名称	符号	单位	公式	成果
1	顶棚管径	d	mm		38. 00
2	节距	S	mm		47. 50
3	排数	n			200.00
4	顶棚管角系数	X		附录 A-1	0. 98
5	顶棚面积	A_{1d}	\mathbf{m}^2		68. 84
6	蒸汽流通面积	A_{1t}	m ²		0. 14
7	炉膛顶棚热负荷分派不均 匀系数	η _h		附录 A-6	0. 68
8	炉膛顶棚总辐射吸热量	Q_{1d}	kJ/h	$3.6 \eta_h q_s A_{1d}$	32586926. 06
9	减温水总流量	Djw	kg/h	先估后较	25000.00
10	炉膛顶棚蒸汽流量	D_{1d}	kg/h	D-Djw	645000.00
11	炉膛顶棚蒸汽焓增	$\triangle h_{1d}$	kJ/kg	Q_{1d}/D_{1d}	50. 52
12	炉膛顶棚进口蒸汽焓	h _{1d} '	kJ/kg	查附录 B-6, B-7	2704. 60
13	炉膛顶棚出口蒸汽焓	h_{1d} "	KJ/kg	h_{1d} + h_{1d}	2755. 12
14	炉膛顶棚出口蒸汽温度	$t_{\scriptscriptstyle 1d}{''}$	$^{\circ}$ C	查附录 B-6, B-7	326.06

屏式过热器构造尺寸

序号	名称	符号	单位	公式	成果
1	管子外径	d	mm		ø42×5
2	屏旳片数	Z			16.00
3	每片屏旳管子排数	n		4×16	64.00
4	屏旳深度	L	m		2. 99
5	屏旳平均高度	h	m		10.67
6	一片屏的平面面积	A_p	\mathbf{m}^2		28. 07
7	屏的横向节距	S_1	mm	屏的间距	591.00
8	比值	σ_1		S_{I}/d	14. 07
9	屏的纵向节距	S_2	mm		46.00
10	比值	$\sigma_{_2}$		S_2/d	1. 10
11	屏旳角系数	хр		附录 A-1 曲线5	0.98
12	屏的计算受热面积	$A_{p,j}$	\mathbf{m}^2	$2A_{p}x_{p}Z$	880. 28
13	屏区顶棚面积	A_{dp}	\mathbf{m}^2	宽×深×角系数	29. 76
14	屏区两侧水冷壁面积	A_{s1}	\mathbf{m}^2	高×深×角系数×2	62. 53

15	屏区附加受热面积	A_{pfj}	m ²	$A_{dp}+A_{s1}$	92. 29
16	烟气进屏流通面积	A,	m ²	(9. 263+2. 538) – 16*0. 042*(9. 263+2. 538)	122. 25
17	烟气出屏流通面积	A _p "	m ²	(9. 263+0. 793) -16*0. 04 2*(9. 263+0. 793)	103. 95
18	烟气平均流通面积	A_y	m ²	$2 \times A_p$, A_p A_p A_p A_p A_p A_p	112. 36
19	蒸汽流通面积	A_{1t}	\mathbf{m}^2	$16 \times 16 \times 3.14 \times d_n^2/4$	0. 21
20	烟气有效辐射层厚度	S	\mathbf{m}^2	$1.8/(1/h+1/L+1/S_1)$	0.85
21	屏区进口烟窗面积	A _{ch} '	\mathbf{m}^2	见表 E9中 A ₂	136. 40
22	屏区出口烟窗面积	A _{ch} "	\mathbf{m}^2	11. 075*9. 263	102. 51

屏旳热力计算

序号	名称	符号	单位	公式	成果
1	烟气进屏温度	θ',	$^{\circ}$	查表3-9炉膛校核热力计算即 炉膛出口烟气温度 θ "1	1048. 05
2	烟气进屏焓	h' _{yp}	kJ/kg	查表3-9炉膛校核热力计算即炉膛出口烟气焓 h"yl	12531. 31
3	烟气出屏温度	θ " $_{ m p}$	$^{\circ}$	先估后校	850.00
4	烟气出屏焓	$h^{''}_{\ yp}$	kJ/kg	查焓温表	9947. 35
5	烟气平均温度	$\theta_{\rm pj}$	$^{\circ}$	(θ'p+θ"p)/2	949. 03
6	屏区附加受热 面对流吸热量	$Q^{\rm d}_{\rm \; pf j}$	kJ/kg	先估后校	380.00
7	屏的对流吸热 量	$Q_{\ p}^{\rm d}$	kJ/kg	φ (h'yp-h"yp+Δαh01k)-Qkp fj	2189. 82
8	炉膛与屏互相 换热系数	β		查附录 A-15	0. 99
9	炉膛出口烟窗 旳沿高度热负 荷分派系数	$\eta_{ m yc}$		查原则线算图11(即附录 A-6)	0.80
10	炉膛出口烟窗 射入屏区旳炉 膛辐射热量	$Q^{'f}_{p}$	kJ/kg	βηусφ (Q1-h'yp) A'ch/Alz	947. 04
11	屏间烟气有效 辐射层厚度	S	m	查表4-5屏的构造数据表	0.85
12	屏间烟气压力	р	Mpa		0. 10
13	水蒸汽容积份 额	$r_{\scriptscriptstyle H20}$		查表2-9烟气特性表	0.08
14	三原子气体辐 射减弱系数	$k_{\scriptscriptstyle q}$	1/(m* Mpa)	10.2[(0.78+1.6rH20)/√10.2 rps]-0.1)(1-0.37Tpj/1000)	11. 05
15		r		查表2-9烟气特性表	0. 22

	三原子气体和				
	水蒸气容积总				
	份额				
16	灰粒旳辐射减 弱系数	$k_{\scriptscriptstyle h}$	1/(m* Mpa)	55900/d2h3√(θpj+273)2d2h	88. 46
17	烟气质量飞灰 浓度	μ_{y}	kg/kg	查表2-9烟气特性表	0. 03
18	烟气的辐射减 弱系数	k	1/(m* Mpa)	kqr+kh μ y	4. 69
19	屏区烟气黑度	a		1-e-kps	0. 33
20	屏进口对出口 旳角系数	X		√[(L/s1)2+1]-L/s1	0. 10
21	燃料种类修正 系数	ξ,		取用	0. 50
22	屏出口烟窗面 积	$A_{p}^{"}$		查表4-5屏的构造数据表	103. 95
23	炉膛及屏间烟 气向屏后受热 面的辐射热量	$Q^{''\mathrm{f}}_{\mathrm{p}}$	kJ/kg	Q'fp(1-a)x/β+σ0aA"chT4pj ξr/Bj/3600 注:σ0=5.67×10-11W/(m2*°C)	156. 44
24	屏区吸取的炉 膛辐射热	$Q^{\rm f}_{\ \rm pq}$	kJ/kg	Q'pf-Q"fp	790. 60
25	屏区附加受热 面吸取的辐射 热量	$Q^{\mathrm{f}}_{\ \mathrm{pf}\mathrm{j}}$	kJ/kg	Qfpq*Apfj/(Apj+Apfj)	75. 02
26	屏区水冷壁吸 取旳辐射热量	$Q^{\rm f}_{\rm ps1}$	kJ/kg	Qfpq*As1/(Apj+Apfj)	50. 83
27	屏区顶棚吸取 旳辐射热量	$Q^{\rm f}_{\ \rm pld}$	kJ/kg	Qfpq*Adp/(Apj+Apfj)	24. 19
28	屏吸取旳辐射 热量	$Q_{\ p}^{\rm f}$	kJ/kg	Qfpq-Qfpfj	715. 57
29	屏吸取的总热 量	Q_p	kJ/kg	Qdp+Qfp	2905. 39
30	第一级减温水 喷水量	Djw1	kg/h	估计	9500. 00
31	第二级减温水 喷水量	Djw2	kg/h	Djw-Djw1	15500. 00
32	屏中蒸汽流量	D_p	kg/h	D-Djw2	654500.00
33	蒸汽进屏温度	ť,	$^{\circ}$	先估后校	350. 00
34	蒸汽进屏焓	h',	kJ/kg	查附录 B-6、B-7, 按计算负荷 下进屏 p= Mpa	2905. 25
35	蒸汽出屏焓	$h^{''}_{\ p}$	kJ/kg	h'p+BjQp/Dp	3268. 73
36	蒸汽出屏温度	t″p	${\mathbb C}$	查附录 B-6、B-7, 按计算负荷 下进屏 p= Mpa	461. 22
37	屏内蒸汽平均	t_{pj}	$^{\circ}$	(t'p+t"p)/2	405. 61

温度		

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/736014143055010145