1.	曲柄->	骨块机构	1
1.1	配置	E ANSYS 工作环境	3
1.2	准备	}连杆柔性体模型	4
	1.2.1	在 ANSYS 里的工作	4
	1.2.2	柔性子系统向导	6
1.3	刚才	< <p>A. A. A</p>	12
	1.3.1	创建几何图形	13
	1.3.2	创建刚体	15
	1.3.3	创建柔性子系统	16
	1.3.4	创建铰	17
1.4	刚才	柴耦合系统动力学仿真	20
2.	柔性平	² 台-电机模型	26
2.1	准备	S柔性平台	27
	2.1.1	在 ANSYS 环境里工作	28
	2.1.2	在 ANSYS Workbench 环境里工作	29
	2.1.3	柔性子系统向导	
2.2	刚才	< <p>转离合系统动力学建模与仿真</p>	37
	2.2.1	导入柔性平台	37
	2.2.2	连接柔性平台与大地	
	2.2.3	创建几何图形	
	2.2.4	创建力元	42
	2.2.5	导入电机子系统	45
	2.2.6	设置电机转子速度曲线	47
	2.2.7	连接电机与柔性平台	49
	2.2.8	计算系统平衡位置和固有频率	51
	2.2.9	运动仿真	53

目 录

1. 曲柄-滑块机构

本例模型为一个曲柄-滑块机构,如图 1.1 所示。在{UM Data}\SAMPLES\ Flex 目录有一个名为 slider_crank_all 的模型。这个模型里共有三个曲柄-滑块机 构,其不同之处在于构件连杆的建模方式:

- 连杆为一个刚体;
- 连杆为一个子系统,由11个刚体通过铰和力元连接而成;
- 连杆为一个柔性体,从有限元软件导入。

图 1.1 曲柄-滑块机构: 1-机架, 2-曲柄, 3-连杆, 4-滑块 这里主要介绍第三个模型——刚柔耦合机构的建模流程:

- 1. 建立连杆的有限元模型;
- 2. 计算所需的模态,并转换保存为 UM 格式;
- 3. 创建几何图形;
- 4. 创建刚体 (曲柄和滑块);
- 5. 导入连杆弹性体;
- 6. 创建铰和力元。

前两步在 ANSYS 里进行,后面四步在 UM 软件里进行。

备注: UM 使用子系统技术处理外部导入的柔性体,每个柔性体都是一个独立的 子系统,导入时选择 Linear FEM Subsystem 类型。

我们可以先创建一个工作目录,方便后续模型使用,如: {UM Data}\My Models,或者 D:\models。

以下以".\"来表示工作目录。在这个目录下我们再创建两个子文件夹:

- flexbeam: 存放柔性体数据;
- slider_crank_fem,存放刚柔耦合模型。

根据自身情况,读者可以有选择地阅读本教程。

- 如果有 ANSYS 软件,并想学习从 ANSYS 导入 UM 的整个流程,那么 请逐页顺序阅读。
- 如果没有 ANSYS 软件或者不想学习在 ANSYS 里的准备工作,那么请 直接从 1.2.2 章节开始阅读。请注意需要从{UM Data}\SAMPLES\Flex\ flexbeam 目录复制 input.fum 文件到.\flexbeam 目录。
- 如果想跳过所有准备柔性体文件的步骤,可以直接从 1.3 章节开始阅读。
 请注意需要从{UM Data}\SAMPLES\Flex\flexbeam 目录复制 input.fss 文件到.\flexbeam 目录。

1.1 配置 ANSYS 工作环境

我们需要先使用 ANSYS 软件创建柔性体模型,然后运行宏命令 um.mac 计算静模态和固有模态,再通过 ANSYS_UM.EXE 转换为 UM 的数据格式。

宏命令文件 um.mac 位于 UM 安装路径的 bin 文件夹下,需要将其复制到 ANSYS 的 apdl 目录。否则,请通过 ANSYS 命令来自定义宏文件搜索路径:

/PSEARCH,Path_to_macro

转换程序 ANSYS_UM.EXE 也位于 UM 安装路径的 bin 文件夹下,为了在 um.mac 执行完毕后自动运行程序 ANSYS_UM.EXE,我们需要打开 um.mac 文 件指定 ANSYS_UM.EXE 的完整路径,如:

/sys,c:\um\bin\ansys_um.exe

备注:如果 ANSYS_UM.EXE 的路径中包含空格,那么需要用双引号,如: /sys,"c:\universal mechanism\bin\ansys um.exe"

ANSYS UM.EXE 的路径只能包含英文字母和数字,不支持中文。

1.2 准备连杆柔性体模型

如前所述,对于刚柔耦合系统中的柔性体,需要先在有限元软件里计算其模态矩阵,一般有两种方法:

- 集中质量矩阵;
- 一致质量矩阵。

在{UM Data}\SAMPLES\Flex\flexbeam\input 目录下有两个文件夹:lumped 和 consistent,其中分别对应使用集中质量矩阵和一致质量矩阵计算连杆模态的 ANSYS 命令流文件。

本例我们采用集中质量矩阵。

1.2.1 在 ANSYS 里的工作

- 首先,请从{UM Data}\SAMPLES\Flex\flexbeam\input\lumped 目录复制 flexbeam&mass21.ans 文件到先前创建好的.\flexbeam 目录。该文件为 ANSYS 命令流文件,用 APDL 语言编写,可自动完成建模。
- 2. 运行 ANSYS 程序(经典界面),指定.\flexbeam 目录为当前工作目录。
- 3. 选择菜单 File | Read Input from,选择 flexbeam&mass21.ans 文件, ANSYS 开始自动建模和计算。模型为一根长 2m、截面为 2cm*2cm 的 钢梁,共有 100 个 BEAM4 梁单元和 200 个 MASS21 质量单元。梁两端 的节点选为界面节点。如果 um.mac 文件已经复制到 ANSYS 的 APDL 目录,那么它会自动运行计算出 12 阶静模态和 10 阶固有模态。
- 如果 um.mac 文件中的 ANSYS_UM.EXE 路径定义正确,那么在 um.mac 执行完毕后, ANSYS_UM.EXE 会自动运行,如图 1.2 所示。否则,请 手动运行,其文件路径为{UM}\bin\ansys um.exe。

An Creating data set for simulation of flexible body	X
File Options Sensors	
ANSYS results file (*.rst):	
D:\Models\flexbeam\flexbeam.rst	
✓ Save to the same directory Target directory:	
D:\Models\flexbeam\flexbeam	õ
Create Close	

图 1.2 ANSYS_UM 程序界面

5. 在General页面,选择上一步计算得到的ANSYS结果文件,路径

为.\flexbeam\flexbeam.rst,并将保存目录设置为.\flexbeam。

6. 在Options页面,取消勾选normalize modes,这样我们就不直接生成最终的input.fss文件,而是生成中间格式文件input.fum。下一步我们再用UM的柔性子系统向导工具进行转换得到最终所需的文件input.fss。

An Creating data set for simulation of flexible body
File Options Sensors
Transformations
Normalize modes
Exclude rigid body modes
Frequency: 0.500
Create

图 1.3

备注:其实这里也可以勾选 normalize modes,直接得到 input.fss 文件,注意需要 在 exclude rigid body modes 处设置一个频率,以将 6 个刚体模态剔除。

- 7. 点击Create按钮,生成input.fum文件并存放于.\flexbeam目录。
- 8. 点击Close,关闭ANSYS_UM.EXE程序。

1.2.2 柔性子系统向导

由 ANSYS_UM.EXE 程序得到的中间格式文件 input.fum 包含了 ANSYS 软件计算得到的静模态和固有模态,我们需要进行正交变换。UM 软件的柔性子系统向导是一个可视化的模态转换工具,可以将 input.fum 转化为 input.fss。

- 1. 运行 UM Input 程序。
- 选择菜单 Tools | Wizard of flexible subsystem, 弹出柔性子系统向导窗口。
- 点击按钮,选择.\flexbeam 文件夹里的文件 input.fum,点击 OK,如
 图 1.4 所示。

图 1.4

柔性子系统向导加载弹性体模型并在 General 页面显示其主要信息,如图 1.5 所示。Position 页面可以调整弹性体在动画窗口显示的位置和方向,当前梁 模型与 X 轴重合,不便于观察,我们可以将其移动适当距离。

- 4. 点击 Position 页面。
- 5. 设置 Shift | z 为 0.3, 如图 1.6 所示。

General	Position	Image	Solution		
Data file:					
D:\Mode	ls\flexbear	n\input.fi	um		
Subsyst	ems inforn	nation			
File of su	ubsystem: ls\flexbear	m\innut f	im		
Data imp	orted from	n progran	n:		
ANSYS1	1.0				
flexbear	solution:				
Title of s	olution (co	mment):			
21.05.2	009,19:00):37, Flex	ible beam	with mass21 el	ements for
denniud	ri torsiori r	noment o	i inerua		
Nodes:					101
Finite ele	ements:				300
Degrees	of freedo	m:			606
Normal n	nodes:				10
Static me	odes:				12
Normaliz	ation:				No

在 Image 页面可以设置弹性体的显示模式: Simplified 和 Full。Full 模式需

图 1.6

要占用更多的 CPU 和内存资源,当光标指向单元或节点时,会显示相关信息。

- 6. 设置 Image 为 Full 模式。
- 取消选择 Image parameters 框的 Draw nodes 选项, 勾选 Hide elements 框的 Single node elements 选项。

General	Position	Image	Solution						
Image			0						
Simpli	fied		() F	Full					
Options	Options Color								
-Image p	parameter	s							
📃 Draw	nodes								
🔽 Draw	/ finite ele	ments							
C 0	ontour								
Bo	ounds are	not visib	le						
Draw	local coo	rdinate s	ystem						
Draw	/ coordina	te syster	ns						
Sizes									
Node im	age:		1	1					
Beam cu	urve widt	h:	4	2					
Single n	ode FE:		3	1					
Length	of local a:	xes:	1.00	2					
Hide ele	ments								
📃 Beam	IS								
Shell:	Shells								
Solids									
Single node elements									
Ad	Additional								

图 1.7

Solution 页面可以查看弹性体每一阶模态的频率和振型动画。选中某阶模态, 点击 Animate 即可。可通过 Amplitude 和 Rate 调节显示的振动幅度和快慢。

每一阶模态前面有一个复选框,默认为勾选状态,可以根据研究需要取消选 择某些模态。需注意,模态越多计算越精确,但计算量越大。对于具体模型,需 要在精度和效率之间找到一个折中方案。

因此,通常只需要在 ANSYS 里计算一次模态(取研究所需最大的模态阶数), 然后在 UM 的柔性体子系统向导可选择不同数量的模态分别进行转换,做对比 研究。

- 8. 勾选 Save to the same directory, 勾选 Transformations | Exclude rigid body modes, 设置 Frequency 为 0.3 (Hz), 如图 1.8 所示。
- 9. 点击 Transform 按钮,开始转换。

General Position Image Solution							
Data set							
Original The second s							
Transformed							
Name of transformed solution							
flexbeam							
Save to the same directory							
Modes Rigid body Interface nodes							
10 normal modes, 12 static modes							
Selected normal modes: 10							
Selected static modes: 12							
✓ 1. normal, 26.668							
✓ 2. normal, 26.668							
✓ 3. normal, /3.512							
V 4. Hormal, 75.512							
▼ 6. normal, 144.112							
✓ 7. normal, 238.224							
☑ 8. normal, 238.224							
☑ 10. normal, 355.866							
V 11. static							
2 12. static							
✓ 13. static							
Animation of modes							
Amplitude Rate							
Frame per 1/4 period: 5 5							
Animate							
Transformations							
Modes Shift SC Rotation of SC							
Exclude rigid body modes							
Frequency: 0.300							
Transform Save as							

图 1.8

10. 然后依次点击是(Y),确定,OK。

UM - Object data input	×
Data conversion complete	
	ОК

图 1.11

转换完成后会弹出提示,表示6个刚体模态已经被剔除。

备注:有限元计算得到的模态包含了其刚体模态,根据 C-B 模态综合法原理, 必须将其剔除。理论上刚体模态频率为 0Hz,但由于数值方法和舍入误差,计算 得到的刚体模态频率不一定为 0,可能是接近 0 的数。

实际上在 Transformations | Frequency 设置的截断频率,即表示小于该频率 值的模态被认为是刚体模态,并予以剔除。

11. 在 Data set 框可以查看原始模态 (Original) 和转换后的模态 (Transformed),确保选择 Transformed,如图 1.12 所示。

General	Position Image Solution						
Data set Original Transformed							
Name of	transformed solution						
flexbeam							

- 图 1.12
- 12. 点击 Save as 按钮, 在弹出的对话框设置保存路径, 并点 Save, 如图 1.13 所示。请注意文件夹 flexbeam 将作为一个弹性体子系统。

-Transfor Modes	Save flexible subsystem data
√ Exd	Path to subsystem data
Freque	Save Cancel
l	
Trans	sform Save as

图 1.13

至此,弹性体模型已经准备好。

1.3 刚柔耦合系统动力学建模

曲柄-滑块机构刚柔耦合模型由两个刚体、一个弹性体和四个铰组成。

刚体:

- 曲柄,长1m;
- 连杆,长2m;
- 滑块。

其中曲柄和滑块为刚体,连杆为弹性体。

铰:

- 曲柄与机架(大地)之间的转动铰;
- 连杆与曲柄之间的转动铰;
- 滑块与连杆之间的转动铰;
- 滑块与大地之间的平动铰。

1.3.1 创建几何图形

- 1. 运行 UM Input 程序,选择菜单 File | New object,新建一个模型。
- 选择菜单 Edit | Read from file,导入几何模型{UM Data}\graph\ Base1.umi,这样就一个名为 NoName 的几何图形就添加到 Images。

3. 选中 NoName, 设置名称为 Base0。

Name:	Base0		Þ	+	Ð	Î
Comme	ents/Text att	ribute C				
		图 1.	15			

以同样的方法从{UM Data}\graph 导入 Crank1.umi 和 Slider1.umi,分别重命名为 Crank 和 Slider。

图 1.16

5. 先左侧模型树选中 Object, 然后在右侧交互界面设置几何图形 Base0 为 Scene Image。

Variables General	Curves Options	Attributes Sensors/LSC							
Transform into subsystem									
Path C:\Users\Public\Documents\UM Software Lab\Uni									
Object identifier									
UMObject									
Comments									
Generation of	equations								
Vumeric-It	erative]							
Gravity force	direction								
ex:									
ey:		<u> </u>							
ez: -1		C							
Characteristic s	Characteristic size: 1.00								
Scene image:	Scene image: No								
	No								
	Crank								
	Slider								
1									

图 1.17

1.3.2 创建刚体

- 2. 重命名为 Crank,并选择几何图形 Crank。
- 3. 在 Parameters 页面,勾选 Compute automatically,程序自动根据几何 形状的密度计算出质量和转动惯量,如图 1.18 所示。

Name:	Crank] -	⊢ +_∞	Ð	Î
Comme	nts/Tex	t attr	ibute C				
Orie	nted po	oints	Vector	s	3D	Contac	t
Pa	ramete	rs	Positio	n		Points	
Coordin	ates (P	P):	Quaternion				•
Go to el	ement						1
Image:			Visible				
Crank							•
✓ Comp	oute au parame	tomat eters	ically				
Mass:		7.403					C
Inertia	tensor:						
0.0047	130039	C		C			C
			1.33271	C			С
	1.3353432						
Added mass matrix: (none)							
Coordin	nates o	fcent	er of mass				
0.5		C	5.578E-20	C	2.841E-1	.9	C

图 1.18

4. 用同样的方法创建刚体 Slider。

1.3.3 创建柔性子系统

- 先在左侧模型树选中 Subsystems,然后在右侧交互界面点击按钮 →, 添加一个子系统。
- 2. 从 Type 下拉菜单选择 Linear FEM Subsystem,并在弹出对话框选择 flexbeam,点击 OK。
- 重命名为 Con-rod FEM。
 这样就导入了弹性体模型,其界面与柔性子系统很相似,但有两处不同:
 - 这里不能选择或取消某些模态;

General

Position

● 这里 Position 界面设置的参数会影响到弹性体在整个模型中的位置。

👩 Read Fi	EM model of object							
Scan the for	Scan the forder:							
D: Models		<u>2</u>						
		Data imported from program: ANSYS1 Name of solution: flexbeam 21.05.2009, 19:00:37, Flexible beam Nodes: 101 Finite elements: 300 Degrees of freedom: 606 Normal modes: 16 Static modes: 0 Computation with lumped mass matrix Min. natural frequency: 26.66 Max. natural frequency: 1717.63 Generalized mass matrix: No Generalized stiffness matrix: No						
D: \Models \f	lexbeam							
ОК	Cancel							
Name:	Con-rod FEM	+ 🕂						
Type:	🕼 Linear FEM sul	bsystem 🔹						
Comme	nts/Text attribute (C						

图 1.19

Image

Solution

Coordinate systems

1.3.4 创建铰

- 1. 先在左侧模型树选中 Joints, 然后在右侧交互界面点击按钮 , 添加一 个铰。
- 选择 Base0 作为 Body1,选择 Crank 作为 Body2,类型为 Rotational, 转动轴为Y轴,如图 1.20 所示。

Name:	jBa	se0_Cran	c			+	•	÷	Ĩ	\bigtriangledown
Body 1:					Body	/2:				
Base0				-	Cran	ık				-
Type:	K F	lotational								•
Geomet	ту	Descriptio	n	Joint f	orce]				
-Joint p	oints	s							19	
Base0									<u> </u>	3
		C				C				C
Crank									<mark>۴</mark>	5
		C				C				C
Joint v	ecto	rs								
Base0			axis	Y:(0,	1,0)					•
0		<u>n</u>	1			n	0			n
Crank			axis	Y:(0,	1,0)					-
0		n	1			n	0			n

 点击 Joint force 页面,选择类型 Expression,并输入表达式 torque-cdiss_crank*v,回车,在弹出的窗口输入参数: torque=100, cdiss_crank=10。

Geon	netry Description Joint force	
a•b [Expression	•
Des Pasc	cription of force/moment cal/C expression: F=F(x,v,t)	
Exa -cst	mple: tiff*(x-x0)-cdiss*v+ampl*sin(om*t)	
-	torque-cdiss_crank*v	P

图 1.21

4. 另外三个铰定义如图 1.22 所示。

Name: jCr	ank_Con-rod	+	Ð	Î	\bigtriangledown
Body 1:		Body2:			
Crank		✓ Con-rod	FEM.fle	xbeam	•
Type: 🗹	Rotational				•
Geometry	Description	Joint force			
-Joint point	ts				
Crank				h }	
1	C	C			С
flexbeam				r .,	
-1	C	C			C
-Joint vecto	ors				
Crank	axis	s Y : (0,1,0)			•
0	<u>n</u> 1	n	0		n
flexbeam	axis	s Y : (0,1,0)			•
0	<u>n</u> 1	<u>n</u>	0		n
Name: jCo	on-rod_Slider	+	Ð	Û	\bigtriangledown

Body1:		Body2:	
Con-rod FE	4.flexbeam	 Slider 	-
Type: 🔇	Rotational		•
Geometry	Description	Joint force	
Joint point	S		R
flexbeam			4
1		C	0
Slider			r z
	C		C
Joint vecto	ors		
flexbeam	axis	Y:(0,1,0)	
0	<u>n</u> 1	<u>n</u> 0	n
Slider	axis	Y : (0,1,0)	•
0	<u>n</u> 1	<u>n</u> 0	n

Name: jBa	se0_Slider	+	•
Body 1:		Body2:	
Base0		▼ Slider	-
Type: 🛃	Translational		.
Geometry	Description	Joint force	
-Joint point	s		IR.
Base0			13
	C	C	C
Slider			r,
	C	C	C
Joint vecto	ors		
Base0	axis	s X : (1,0,0)	-
1	<u>n</u> 0	<u>n</u> () <u>n</u>
Slider	axis	s X : (1,0,0)	•
1	<u>n</u> 0	<u>n</u> () <u>n</u>

5. 选择菜单 File | Save as 保存模型。

Save as		×
Path (including object na	me):	
D:\Models\slider_crank_	fem	e 🗸
	Save	Cancel

6. 最后,请将包含柔性体信息的 input.fss 文件所在文件夹.\flexbeam 复制 到模型目录.\slider_crank_fem,这样在运行仿真时程序会自动找到柔性 体子系统,否则需要手动指定。

► Work (D:) ► M	lodels → slider_crank_fem →				
/) 工具(T) 帮助(H	ł)				
包含到库中 ▼ 🗧	共享 ▼ 刻录 新建文件夹				
^	名称	修改日期	类型	大小	
	🌗 flexbeam	2019/4/26 21:22	文件夹		
	🕑 input.dat	2019/4/25 21:51	Universal Mecha	5 KB	
	🛃 object.bmp	2019/4/25 21:51	BMP 图像	226 KB	

图 1.24

1.4 刚柔耦合系统动力学仿真

- 选择菜单 Object | Simulation,运行 UM Simulation 程序并加载模型(待 UM Simulation 程序运行加载模型后,最好将 UM Input 程序关闭)。
- UM Simulation 程序默认会打开一个动画窗口,如果没打开,可选择菜 单 Tools | Animation window。
- 3. 选择菜单 Analysis | Simulation, 弹出仿真控制界面。读者可以在 FEM subsystems | Image 页面自由设置显示参数。
- 在 FEM Subsystems | Simulation | Option 页面,勾选 Gravity 和 Fix modal coordinates,在 Simulation | Damping 页面,设置阻尼相关系数 a=0.001, b=0,如图 1.25 所示。

Object simulat	ion inspector			Object sim	ulation inspector		
Solver	Identifiers	Initial conditions	Object variables	Solver	r Identifiers	Initial conditions	Object variables
XVA	Information	FEM subsyste	ms Tools	XVA	Informatio	n FEM subsystem	ns Tools
Subsystem:	Con-rod FEM			Subsystem	: Con-rod FEM		
General Simul	ation Image Solution	n		General S	Simulation Image Solu	ution	
Options Dam	ping			Options	Damping		
General				Damping	bamping		
Gravity				Dumping I	al alterate altera		
Switch off	all flexible modes			✓ Intern	al dissipation		
				Type of	definition		
Calculation of	finitial conditions			Linea	r model		
Fix modal (coordinates			O Damp	oing ratio for each mode		
Storing				-Linear m	odel		
Store valu	es of modal coordinate	s		D=aC	+bM		
Destination		0.51		a: 0.00	1	n b: 0	n
@ Memory		Ile Tile		Damping	ratio for each mode		
File: c:\use	rs \public \documents \ur	m software lab \universal m	echani: 📶 🛛 🔓	Calcula	ate		
				N	Frequency (Hz)	Damping ratio	•
				1	26.6621	0	
				2	26.6621	0	
				•			+
						Set to all	
Integrat	ion	Message	Close	Inte	gration	Message	Close

图 1.25

- 点击 Initial conditions 页面,从下拉菜单选择 Con-rod FEM 子系统,如 所示。带有➡标记的自由度意味着锁定状态。在这里,表示在计算初始 位置时忽略其弹性变形。
- 6. 点击按钮[●],计算约束状态下的初始位置,这时动画窗口也会相应显示,如图 1.27 所示。

	Ir	nformation		FEM subsy	stems		Tools			
So	olver	Ider	ntifiers	Initial conditions	s	Object variables	XVA			
Coordinat	es Cor	nstraints on initia	al conditions							
e e		$\Theta \oplus \Theta$	x=0 ν=0	<u> </u>						
slider_cra	nk_fem2	.Con-rod FEM.								
	ŵ	Coordinate		Velocity	Comment					
2.1		2		0	Joint (t) 1	L				
2.2		0		0	Joint (t) 2	!				
2.3		0		0	Joint (t) 3	1				
2.4		0		0	Joint (a)	1				
2.5		0		0	Joint (a)	2				
2.6		0		0	Joint (a)	3				
2.7	ŵ	0		0	Mode 1					
2.8	ψ	0		0	Mode 2					
2.9	ŵ	0		0	Mode 3					
2.10	ŵ	0		0	Mode 4					
2.11	ŵ	0		0	Mode 5					
2.12	ŵ	0		0	Mode 6					
2.13	ŵ	0		0	Mode 7					
2.14	ŵ	0		0	Mode 8					
2.15	ŵ	0		0	Mode 9					
2.16	ŵ	0		0	Mode 10					
2.17	ŵ	0		0	Mode 11					
2.18	ŵ	0		0	Mode 12					
2.19	ŵ	0		0	Mode 13					
2.20	ŵ	0		0	Mode 14					
2.21	ŵ	0		0	Mode 15					
2.22	ŵ	0		0	Mode 16					
•										
Messa	ge d	x= 0.1	🖬 da=	0.1 🔟						
Number of	fd.o.f. =	= 17		Number of d.o.f. = 17						

图 1.27

- 7. 选择菜单 Tools | Graphic window, 打开一个绘图窗口。
- 选择菜单 Tools | Wizard of variables,打开变量向导,创建两个支反力 jCrank_Con-rod 和 jCon-rod_Slider,如图 1.28 所示(Reaction 页面), 并拖入绘图窗口,然后关闭变量向导。

😨 Wizard of variables				×
Variables for group of bodies	Doint forces	1 Angular variables	🏎 Linear variables	a+b Expression
User variables 5 Reactions	s 🏥 Coordinate	es alg Solver variable	s 🛛 👯 All forces	Identifiers
Image: sider_crank_fem jBase0_Crank jCrank_Con-rod jCon-rod_Slider jBase0_Slider Image: Description of the state stat	Selected (total 2) jCrank_Con-rod, jCon Type Force Component X Resolved in SC of bo Base0 Acts on So body 1 body 2	-rod_Slider	Torque	♥
jRFm(jCrank_Con-rod,) Re	active force for joint jCr	ank_Con-rod,, magnitude		F
jRFm(jCrank_Co) jRFm(jCon-rod				

图 1.28

- 9. 在仿真控制界面点击 Solver 页面,设置参数如下:
 - Solver = Park
 - Type of solving = Range Space Method
 - Simulation time = 2
 - Step size for animation and data storage = 0.001
 - Error tolerance = 1E-7
 - Computing Jacobian matrices = on
 - Block-diagonal matrices = off

Object simulation	n inspector						
XVA	Inf	ormation	FEM subsy	/stems	Tools		
Solver	Ident	ifiers	Initial conditions		Object variables		
Simulation process	parameters	Solver options	s Type of coordina	tes for bodie	s PP: Options		
Simulation process parameters Solver options Type of coordinates for bodies PP: Options Solver BDF ABM Null space method (NSM) Image of Park Image of Coordinates for bodies PP: Options Image of Coordinates for bodies PP: Options Image of Coordinates for bodies PP: Options Solver Null space method (NSM) Image of Coordinates for bodies PP: Options Image of Coordinates for bodies Image of Coordinates for bodies Image of Coordinates Image of Coordinates Image of Coordinates							
Integratio	n	м	essage		Close		

图 1.29

10. 点击 Integration 按钮开始仿真,在动画窗口可以观察机构的运动情况 (图 1.30),在绘图窗口可以观察支反力时程曲线 (图 1.31)。

图 1.31

读者可以打开位于{UM Data}\SAMPLES\Flex 目录的 slider_crank_all 模型, 对比不同建模方法的连杆对结果的影响,如图 1.32 所示。

图 1.32 红色曲线对应刚性连杆,蓝色曲线对应柔性连杆

图 2.1

柔性平台通过四个粘弹性力元与大地相连,电机多刚体模型作为一个外部子 系统导入,并与柔性平台通过四个粘弹性力元连接。电机转子上安装有一个偏心 轮,它的转动引起柔性平台振动。

刚柔耦合系统建模流程:

- 在 ANSYS 软件里创建平台有限元模型;
- 将柔性平台导入 UM 模型;
- 创建柔性平台与大地的连接;
- 创建电机模型;
- 以子系统形式导入电机模型;
- 创建柔性平台与电机的连接。

动力学仿真分析内容:

- 各个力元的时程曲线;
- 柔性平台节点的垂向位移和加速度。
 模拟电机的工作模式:
- 启动 (角速度从0逐步增加);
- 匀速 (角速度恒定);
- 关机 (角速度逐步减小至0)。

请先在工作目录创建两个文件夹 Vibrostand 和 Platform。

- .\Vibrostand (用于最终的刚柔耦合模型)
- .\Vibrostand\Platform (用于柔性平台子系统)

2.1 准备柔性平台

在 UM 软件里,每个柔性体都是作为一个独立的子系统存在,其类型为 Linear FEM Subsystem,标准格式文件为 input.fss,制作流程如下:

- 在 ANSYS 软件里创建平台有限元模型;
- 计算模态并输出 UM 所需的格式文件; 两种方式:
- 由 ANSYS_UM.EXE 程序直接生成 input.fss 文件。
- 先由 ANSYS_UM.EXE 程序生成 input.fum 文件,再利用 UM 的柔性子 系统向导工具转换生成 input.fss 文件。使用柔性子系统向导的优势在于 既能可视化观察每阶模态,还能手动剔除某些不需要的模态。

在{UM Data}\SAMPLES\Flex\Vibrostand\platform 目录下有三个文件: input.fss、input.fum 和 PlatformShell63Demo.ans。

- 如果没有 ANSYS 软件或者不想学习在 ANSYS 里的准备工作,那么请 直接从 2.1.3 章节开始阅读。请注意需要从{UM Data}\SAMPLES\Flex\ Vibrostand\platform 目录复制 input.fum 文件到先前创建 的.\Vibrostand\Platform 目录。
- 如果想跳过所有准备弹性体文件的步骤,可以直接从 2.2 章节开始阅读。 请注意需要从{UM Data}\SAMPLES\Flex\Vibrostand\platform 目录复 制 input.fss 文件到.\Vibrostand\Platform 目录。

2.1.1 在 ANSYS 环境里工作

在开始前,请确认已经按 1.1 章节的操作配置好了 ANSYS 工作环境。 接下来进行如下操作:

- 请读者先从{UM Data}\SAMPLES\Flex\Vibrostand\platform 目录复制 文件 PlatformShell63Demo.ans 到.\Vibrostand\Platform 目录。 PlatformShell63Demo.ans 文件是采用 ANSYS 的 APDL 命令编写的, 可自动完成建模。
- 2. 运行 ANSYS APDL Product Launcher,设置.\Vibrostand\Platform 为当 前工作目录。
- 3. 点击 RUN,运行 ANSYS 经典界面。
- 选择菜单 File | Read Input from, 选择命令流 PlatformShell63Demo.ans, 程序自动完成平台建模。

备注: 平台有两根 1m 长的梁和中间一块板组成, 共有 4224 个 SHELL63 单元, 单元尺寸为 5cm。读者可以用记事本打开 PlatformShell63Demo.ans 文件, 修改模型参数。与大地相连的四个节点选作界面节点。

- 5. 建模完成后自动运行 um.mac 宏命令, 计算出 24 阶静模态和 10 阶固有 模态。
- 随后, ANSYS_UM.EXE 程序自动运行,请读者按 1.2.1 章节第 5-8 步骤 进行转换,生成 input.fum 文件。

2.1.2 在 ANSYS Workbench 环境里工作

 适用于 ANSYS 经典界面的命令流文件 PlatformShell63Demo.ans 不可 直接用于 ANSYS Workbench 环境。我们需要用记事本打开,删除以下 与 UM 有关的代码,并保存文件:

> NSEL,s,,,ALL ESLN,s,0,ALL CM,ESTRS,ELEM ESEL,ALL NSEL,ALL KSEL,A,,,11 KSEL,A,,,105 KSEL,A,,,111 NSLK,S UM,10,1,1,1

运行 ANSYS 经典界面,选择菜单 File | Read Input from,读入修改后的 PlatformShell63Demo.ans;然后选择菜单 Preprossor | Archive Model | Write,输出 Platform.cdb 文件,如图 2.2 所示。

File Select List Plot Plot Ctrls WorkPlane Parameters Macro MeguCtrls Help Image: Imag	
Image: Constants Image: Constants Imag	
Toolbar SAVE_DB_RESUM_DB_QUIT_POWRGRPH Main Menu Preprocessor ELEMENTS ELEMENTS ELEMENTS A Write Geometry/Loads for Archiving A Write Geometry/Loads for Archiving Comparison Data to Archive DB All finite element information Comparison	
SAVE_DB_RESUM_DB_QUIT_POWRCRPH Main Menu Preferences Preprocessor Blement Type Real Constants Material Props Sections Blockling Checking Ctrls Checking Ct	
Main Henu Image: Constants Preprocessor ELEMENTS B Read Image: Constants B Active Image: Constants B Issering Image: Constants B Acade Image: Constants B Counciling Image: Constants <	
Preferences 1 Preprocessor ELEMENTS B Read ELEMENTS B Read Mite Geometry/Loads for Archiving B Leshing Element Type B Leshing Element Type B Leshing Element Type B Archive Todel Data to Archive DB All finite element information Element of the type	
B Multi-field Set Up B Multi-field Set Up B Physics Physics B Solution General Postproc TimeHist Postpro B Roll Tool B Prob Design B Radiation Opt Session Bditor Finish IGES file Platform.iges OK	

图 2.2

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/73702405113</u> 6010020