目录

一. 盒子记号打印器设计要求
1.1 工作原理及工艺动作过程
1.2 设计要求
二 . 课程设计的方案及方案的选择
2.1 各执行机构的可能方案
(1) 送料机构方案
(2) 打印机构方案
(3) 输出运动机构方案
2.2 机械运动系统方案的选型
(1) 运动机构方案一
(2) 运动机构方案二
(3) 运动机构方案三
2.3 盒子记号打印器机构运动方案的选择和评定
三. 盒子记号打印器机构运动方案的尺寸综合10
3.1 盒子尺寸10
3.2 轮槽轮机构的尺寸1
3.3 凸轮机构的尺寸1
3.4 皮带轮机构的尺寸1
3.5 电动机的选择与传动比的确定1
皿 扣标定动力安二类图以区理
四. 机械运动方案示意图及原理14
五.课程设计心得体会1
参 老 文献

一设计任务

1.1 工作原理及工艺动作过程

对于包装好的纸盒上,为了商品的某种需要而打印一种记号。它的动作主要有三个:

- ① 送料到打印工位;
- ② 打印记号;
- ③ 将产品输出。

1.2设计要求

① 基本参数

基本参数

生产率(次/min)	60	70	80
纸盒长度(mm)	100-150	150-200	120-180

- ②纸盒宽: 70-100 (mm), 纸盒高: 30-50 (mm);
- ③产品重量: 5-10 N;

由要求机构的结构简单紧凑、运动灵活可靠、易于加工制造。

二运动方案的分析

2.1 各执行机构的可能方案

(1)送料机构:

送料需要实现往复直线运动, 所以可采用以下两种方:

① 圆柱凸轮机构: 如图2.1

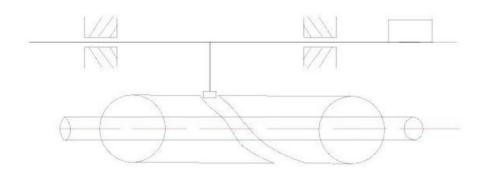


图2.1 圆柱凸轮机构

② 摆动导杆机构: 如图2.2

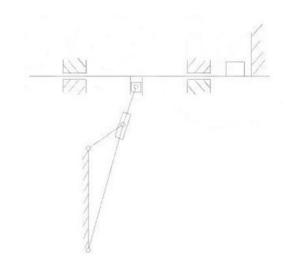


图2.2 摆动导杆机构

(2)打印机构:

当物体被运送到指定位置时,这时就需要进行打印,把标记打印到盒子上。

打印机构是需要进行间歇运动的,同时应与盒子有一定的接触时间,从而确定有清晰地打印记好。可以采用以下两种机构实现:

① 曲柄滑块机构: 如图2.3

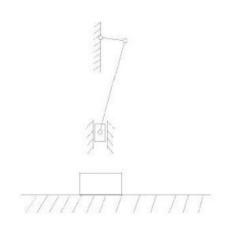


图2.3曲柄滑块机构

② 凸轮机构: 如图2.4

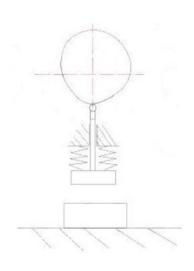


图2.4凸轮机构

(3)输出机构:

输出应是连续不断的,而且对盒子没有冲击性,输出易于堆放。有以下两种方案:

①曲柄滑块机构如图2.5

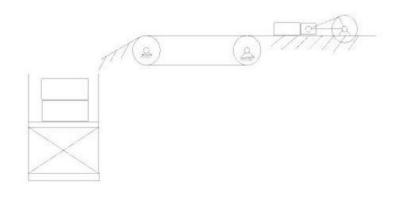


图2.5曲柄滑块机构

②轮槽,皮带轮机构:如图2.6

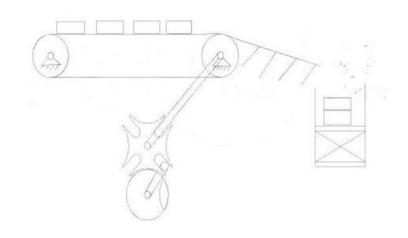


图2.6轮槽,皮带轮机构

2. 2机械运动系统方案的选型

通过对各个机构的分析,并对功能,生产性,效率等多方面的考虑。总结了三个运动方案系统。

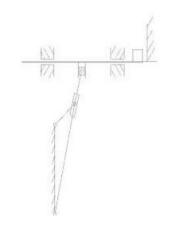
(1)方案一:

工作原理及运动简图(如图2.7)

运送要打印的盒子到指定的位置

通过摆动导杆实现推盒子杆的往复运动,将盒子送到指定位置(有挡

板确定位置)。


打印盒子的记号

通过对电动机进行减速后,连接到曲柄滑块机构上,失去柄滑块机构做上下直线往复运动,当送盒子的机构,送入一次打印一次。

输出

与送料机构成90度方向上设一曲柄滑块机构,通过动盒子皮带轮上实现输出。

运动,推

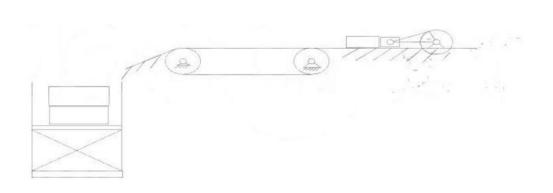


图2.7方案一组合图

(2)方案二

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/758135010132006113