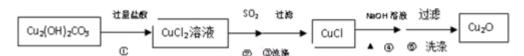
四川省渠县中学 2024-2025 学年高三下 5 月第一次阶段达标检测试题化学试题

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用 2B 铅笔将试卷类型 (B) 填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
- 2. 作答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
- 4. 考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
- 一、选择题(每题只有一个选项符合题意)
- 1、下列物质和铁不可能发生反应的是()
- A. Al_2O_3
- B. H₂O
- C. 浓硝酸
- $D. O_2$
- 2、新冠疫情暴发,消毒剂成为紧俏商品,下列常用的消毒剂中,消毒原理与氧化还原无关的是()

选项	A	В	С	D
消毒剂	双氧化水	臭氧	医用酒精	84 消毒液


A. A

B. B

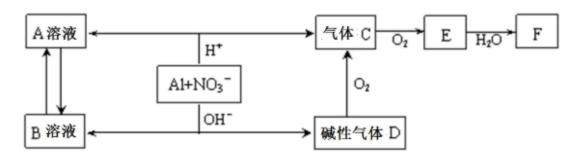
С. С

D. D

3、某同学通过如下流程制备氧化亚铜:

已知: CuCl 难溶于水和稀硫酸; Cu,O+2H⁺ → Cu+Cu²⁺+H,O

下列说法错误的是


- A. 步骤②中的SO,可用Na,SO,替换
- B. 在步骤③中为防止CuCl被氧化,可用H₂SO₃水溶液洗涤
- C. 步骤④发生反应的离子方程式为: $2CuCl+2OH^{-} \xrightarrow{\Delta} Cu_{,}O+2Cl^{-}+H_{,}O$
- D. 如果 $Q_{12}Q$ 试样中混有 $C_{11}Q$ $C_{11}Q$ $C_{11}Q$ $C_{11}Q$ $C_{11}Q$ $C_{12}Q$ C_{1
- 4、化学与生活、社会发展息息相关,下列有关说法不正确的是
- A. "时气错逆,霾雾蔽日",雾所形成的气溶胶能产生丁达尔效应
- B. "青蒿一握,以水二升渍,绞取汁";屠呦呦改进提取青蒿素的方法,提取过程中发生了化学变化

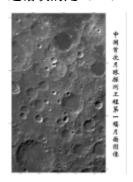
- C. 刘禹锡的"千淘万漉虽辛苦,吹尽狂沙始到金"可以看出金性质稳定,可通过物理方法得到
- D. "外观如雪,强烧之,紫青烟起"。对硝酸钾的鉴定过程中利用了焰色反应
- 5、下列化学用语表示正确的是()
- A. 中子数为 16 的硫原子: 48 S B. Cl 的结构示意图:
- C. 甲酸甲酯的结构简式: HCOOCH₃ D. 氢氧化钠的电子式: Na: Ö:H
- 6、下列实验操作能实现相应实验目的的是

	实验目的	实验操作
A	比较 CI 和 S 的非金属性	往 Na ₂ S 溶液中通入氯气,观察溶液是否变浑浊
В	验证铁的吸氧腐蚀	将铁钉放入试管中,用盐酸浸没
C	制取氢氧化铁胶体	将 FeCl ₃ 溶液滴入 NaOH 溶液
D	比较 HCIO 和 H ₂ CO ₃ 的酸性	测量并比较等浓度 NaClO 与 Na ₂ CO ₃ 溶液的 pH

- A. A
- B. B
- C. C
- D. D

- 7、下列说法正确的是
- A. 乙烯生成乙醇属于消去反应
- B. 乙烷室温能与浓盐酸发生取代反应
- C. 乙酸与甲酸甲酯互为同分异构体
- D. 乙酸与溴乙烷均可发生加成反应
- 8、下列说法中正确的是 ()
- A. 加热浓硫酸和乙醇混合液,产生的气体能使溴水褪色,证明该气体是乙烯
- B. 用苯与溴水制取溴苯, 溴苯的密度比水的大
- C. 铜与稀硝酸制取一氧化氮,可以利用排水法收集
- D. 加热氢氧化钙与氯化铵反应制氨气, 氨气能使红色石蕊试纸变蓝
- 9、铝在酸性或碱性溶液中均可与 NO; 发生氧化还原反应,转化关系如下图所示:

下列说法错误的是


- A. B 溶液含[Al(OH)₄]-
- B. A 溶液和 B 溶液混合无明显现象
- C. D与F反应生成盐
- D. E 排入大气中会造成污染
- 10、雾霾中对人体有害的主要成分有固体细颗粒、氮和硫的氧化物、芳香烃、重金属离子。下列说法不正确的是
- A. 苯是最简单的芳香烃
- B. 重金属离子可导致蛋白质变性
- C. 氮和硫的氧化物都属于酸性氧化物
- D. 汽车尾气的大量排放是造成雾霾天气的人为因素之一
- 11、下列实验操作、现象和结论均正确的是

选项	操作	现象	结论		
A	①将湿润的红色石蕊试纸 靠近试管口	试纸不变色	NH ₄ Cl 受热不分解		
В	②中振荡后静置 NaOH溶液和溶有Br.的溴苯	下层液体颜色变浅	NaOH 溶液可除去溶在溴苯中 的 Br ₂		

С	③旋开活塞 — 氨 —————————————————————————————————	观察到红色喷泉	NH_3 极易溶于水,氨水显碱性
D	④闭合开关 K, 形成原电池 CuSO4溶液 ZnSO4溶液	Zn 极上有红色固体析出	锌的金属性比铜强

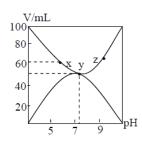
A. A B. B C. C D. D

12、我国首次月球探测工程第一幅月面图像发布。月球的月壤中含有丰富的 ³He,月海玄武岩中蕴藏着丰富的钛、铁、铬、镍、钠、镁、硅、铜等金属矿产资源和大量的二氧化硅、硫化物等。将为人类社会的可持续发展出贡献。下列叙述错误的是(

- A. 二氧化硅的分子由一个硅原子和两个氧原子构成
- B. 不锈钢是指含铬、镍的铁合金
- C. ³He 和 ⁴He 互为同位素
- D. 月球上的资源应该属于全人类的
- 13、由下列实验及现象推出的相应结论正确的是

实验	现象	结论
A. 某溶液中滴加 K ₃ [Fe(CN) ₆]溶液	产生蓝色沉淀	原溶液中有 Fe ²⁺ ,无 Fe ³⁺
B. 向 C ₆ H ₅ ONa 溶液中通入 CO ₂	溶液变浑浊	酸性:H ₂ CO ₃ >C ₆ H ₅ OH

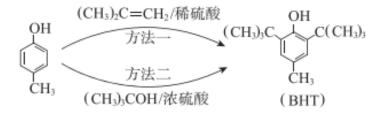
C. 向含有 ZnS 和 Na ₂ S 的悬浊液中滴 加 CuSO ₄ 溶液	生成黑色沉淀	K _{sp} (CuS) <k<sub>sp(ZnS)</k<sub>
D. ①某溶液中加入 Ba(NO₃)₂溶液②再加足量盐酸	①产生白色沉淀 ②仍有白色沉淀	原溶液中有 SO4 ²⁻


A. A

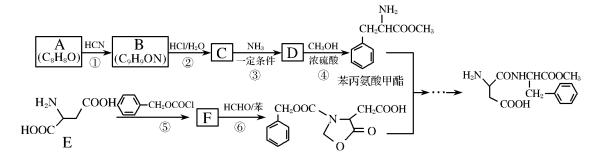
B. B

C. C

D. D


14、25℃,将浓度均为 0.1 mol/L 的 HA 溶液 V_a mL 和 BOH 溶液 V_b mL 混合,保持 V_a+V_b=100 mL,生成物 BA 易溶于水。V_a、V_b与混合液 pH 的关系如下图。下列叙述错误的是

- A. HA 一定是弱酸
- B. BOH 可能是强碱
- C. z点时,水的电离被促进
- D. x、y、z 点时,溶液中都存在 c(A-)+c(OH-)=c(B+)+c(H+)

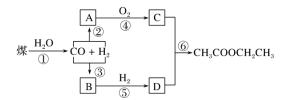

15、BHT 是一种常用的食品抗氧化剂,由对甲基苯酚($\mathrm{CH_3}$ —— OH)合成 BHT 的常用方法有 2 种(如图),

下列说法不正确的是

- A. BHT 能使酸性 KMnO₄溶液褪色
- B. BHT 与对甲基苯酚互为同系物
- C. BHT 中加入浓溴水易发生取代反应
- D. 方法一的原子利用率高于方法二
- 16、下列有关判断的依据正确的是()
- A. 电解质: 水溶液是否导电
- B. 原子晶体: 构成晶体的微粒是否是原子

- C. 共价分子: 分子中原子间是否全部是共价键
- D. 化学平衡状态: 平衡体系中各组分的物质的量浓度是否相等
- 二、非选择题(本题包括5小题)
- 17、某研究小组按下列路线合成甜味剂阿斯巴甜

已知: ①芳香化合物 A 能发生银镜反应,核磁共振氢谱显示有 5 种不同化学环境的氢原子;

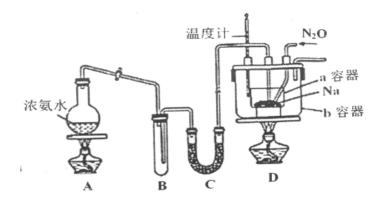

 ${\rm 3\!RCN_{H^+/H_2O}RCOOH}$

$$^{\odot}$$
R—CHCOOH $\xrightarrow{NH_3}$ R—CHCOOH

回答下列问题:

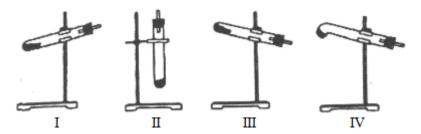
- (1)F 的结构简式是。
- (2)下列说法正确的是。
- A. 化合物 A 的官能团是羟基
- B. 化合物 B 可发生消去反应
- C. 化合物 C 能发生加成反应
- D. 化合物 D 可发生加聚反应
- (3) 写出阿斯巴甜与足量 NaOH 水溶液充分反应的化学方程式: 。
- (4)写出同时符合下列条件的 D 的同分异构体的结构简式: _____。
- ①有三种化学环境不同的氢原子; ②含苯环的中性物质。

- (5)参照上述合成路线,设计一条由甲醛为起始原料制备氨基乙酸的合成路线。
- 18、煤的综合利用有如下转化关系。CO 和 H_2 按不同比例可分别合成 A 和 B,已知烃 A 对氢气的相对密度是 14,B 能发生银镜反应,C 为常见的酸味剂。


请回答:

(1)有机物 D	中含有的官能团的名称为	۰
ι-	, 14 D C D C -		

- (2)反应⑥的类型是。
- (3)反应④的方程式是_____。
- (4)下列说法正确的是____。
- A. 有机物 A 能使溴水和酸性高锰酸钾溶液褪色
- B. 有机物 B 和 D 能用新制碱性氢氧化铜悬浊液鉴别
- C. 有机物 C、D 在浓 H₂SO₄作用下制取 CH₃COOCH₂CH₃,该反应中浓 H₂SO₄是催化剂和氧化剂
- D. 有机物 C 没有同分异构体
- 19、叠氮化钠(NaN₃)固体易溶于水,微溶于乙醇,不溶于乙醚,是汽车安全气囊中的主要成分,能在发生碰撞的瞬间分解产生大量气体使气囊鼓起。

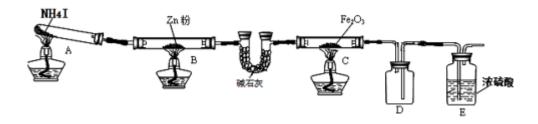

已知: $NaNH_2 + N_2O^{\frac{210\sim220^{\circ}C}{2}}NaN_3 + H_2O$.

实验室利用如图装置模拟工业级 NaN3 制备。

实验 I: 制备 NaN₃

- (1)装置 C 中盛放的药品为 , 装置 B 的主要作用是
- (2) 为了使 a 容器均匀受热,装置 D 中进行油浴而不用水浴的主要原因是。
- (3) 氨气与熔化的钠反应生成 NaNH2 的化学方程式。
- (4) N₂0 可由 NH₄NO₃ (熔点 169.6℃) 在 240℃分解制得,应选择的气体发生装置是。

实验 Ⅱ: 分离提纯

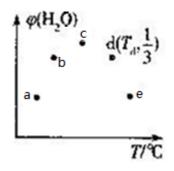

分离提纯反应完全结束后,取出装置 D中的混合物进行以下操作,得到 NaN3 固体。

(5)已知: NaNH₂能与水反应生成 NaOH 和氨气,操作Ⅳ采用 洗涤,其原因是

实验Ⅲ: 定量测定

实验室用滴定法测定叠氮化钠样品中 NaNa的质量分数:

- ①将 2.500g 试样配成 500.00mL 溶液。
- ②取 50.00mL 溶液于锥形瓶中,加入 50.00mL 0.1010 mol·L⁻¹ (NH₄)₂Ce(NO₃)₆ 溶液。
- ③充分反应后,将溶液稍稀释,向溶液中加入8mL浓硫酸,滴入3滴邻菲啰啉指示液,
- 0.0500 mol·L⁻¹(NH₄)₂Fe(SO₄)₂ 标准溶液滴定过量的 Ce⁴⁺,消耗标准溶液的体积为 29.00mL。测定过程中涉及的反应方程式如下: 2(NH₄)₂Ce(NO₃)₆+2NaN₃=4NH₄NO₃+2Ce(NO₃)₃+2NaNO₃+3N₂↑,Ce⁴⁺+Fe²⁺=Ce³⁺+Fe³⁺
- (6)配制叠氮化钠溶液时,除烧杯、玻璃棒、量筒外,还需要用到的玻璃仪器有_____。若其它读数正确,滴定到终点后读取滴定管中 $(NH_4)_2Fe(SO_4)_2$ 标准溶液体积时俯视,将导致所测定样品中叠氮化钠质量分数_____(选填"偏大"、"偏小"或"不变")。
- (7) 试样中 NaN₃ 的质量分数为 。(保留四位有效数字)
- 20、某研究小组利用下图装置探究温度对氨气还原 Fe_2O_3 的影响(固定装置略)。完成下列填空:


- (1) 实验时 A 中有大量紫红色的烟气,则 NH₄I 的分解产物为 ___(至少填三种), E 装置的作用是___。
- (2) 装置 B 中的反应方程式: , D 装置的作用是 。

某研究小组按上图装置进行对比实验,甲组用酒精灯、乙组用酒精喷灯对装置 C 加热,反应产物均为黑色粉末(纯净物),两组分别用各自的产物进行以下探究,完成下列填空:

步骤	操作	甲组现象	乙组现象
1	取黑色粉末加入稀盐酸	溶解,无气泡	溶解,有气泡
2	取步骤 1 中溶液,滴加 KSCN 溶液	变红	无现象
3	向步骤 2 溶液中滴加新制氯水	红色先变深后褪去	先变红后也褪色

(3)	乙组得到	间的黑色岩	松末县	
(3)		いいいか こう	ソハル	0

- (4) 甲组步骤 1 中反应的离子方程式为。
- (5) 乙组步骤 3 中,溶液变红的原因为 ;溶液褪色可能的原因及其验证方法为 。
- (6) 若裝置 \mathbb{C} 中 Fe_2O_3 反应后的产物是两种氧化物组成的混合物,为研究氧化物的组成,研究小组取样品 7.84 克在加热条件下通入氨气,完全反应后,停止加热,反应管中铁粉冷却后,称得质量为 5.6 克,则混合物的组成为____。 21、甲醇是一种可再生的绿色能源, $\mathbb{C}O_2$ 是一种温室气体,都是重要的化工原料。
- (2)向温度不同容积均为 1L 的 a、b、c、d、e 五个恒容密闭容器中各充入 3 $molCO_2$ 、 7 $molH_2$ 的混合气体,控制适当条件使其同时发生反应: CO_2 (g)+ $3H_2$ (g) —— CH_3OH (g)+ H_2O (g) $\Delta H=QkJ$ • mol^{-1} ,反应过程中维持各容器温度不变,测得 t_1 时刻各容器中 H_2O 的体积分数 φ (H_2O)如图所示。

- ①Q (填">"或"<")0, 五个容器中肯定处于非平衡状态的是。
- ② t₁ 时刻时,容器 a 中正反应速率_____(填"大于""小于"或"等于")容器 e 中正反应速率;
- ③ T_d ℃时,该反应的平衡常数 K=_____;

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/765103223143012003