初中化学选择试题大全

一、变化

- 1(1). 下列变化中, 属化学变化的是
- (A) 常温下氧气和氧气混和 压缩成固体
- (C) 把硫酸钡投入水中 中
- 2(2). 下列变化中, 属化学变化的是
 - (A) 从空气中分离出氧气
- (C) 蒸发食盐水, 得食盐晶体 得氧气
- 3(2). 下列变化中, 属化学变化的是
 - (A) 食盐溶液滴入硝酸钾溶液中, 得到澄清透明溶液
 - (B) 盐酸滴入氢氧化钠溶液中, 得到澄清透明溶液
 - (C) 过滤粗食盐水,得到澄清透明食盐溶液
 - (D) 蒸发食盐溶液,得到食盐晶体
- 4(1). 下列变化中, 属化学变化的是
 - (A) 钢铁生锈
 - (C) 冰融化成水
- 5(1). 下列变化中, 属物理变化的是
- (A) 浅蓝色液氧变成无色氧气 取氧气
- (C) 把干冰放入澄清石灰水中 (D) 点燃蜡烛, 一段 时间后蜡烛变短了
- 6(1). 下列变化中, 属化学变化的是
- (A) 在低温加压下, 空气变为液态空气 (B) 常温时把氧气 与空气混合
 - (C) 加热水变成水蒸气
- 7(1). 下列变化中, 属物理变化的是
 - (A) 从空气中分离出氧气

- (B) 二氧化碳气体经
- (D) 把氧化钾投入水
- (B) 过滤食盐水
- (D) 加热高锰酸钾,

- - (B) 矿石粉碎
 - (D) 钢锭轧成
 - (B) 加热高锰酸钾制
 - - (D) 白磷自燃
 - (B) 加热高锰酸钾

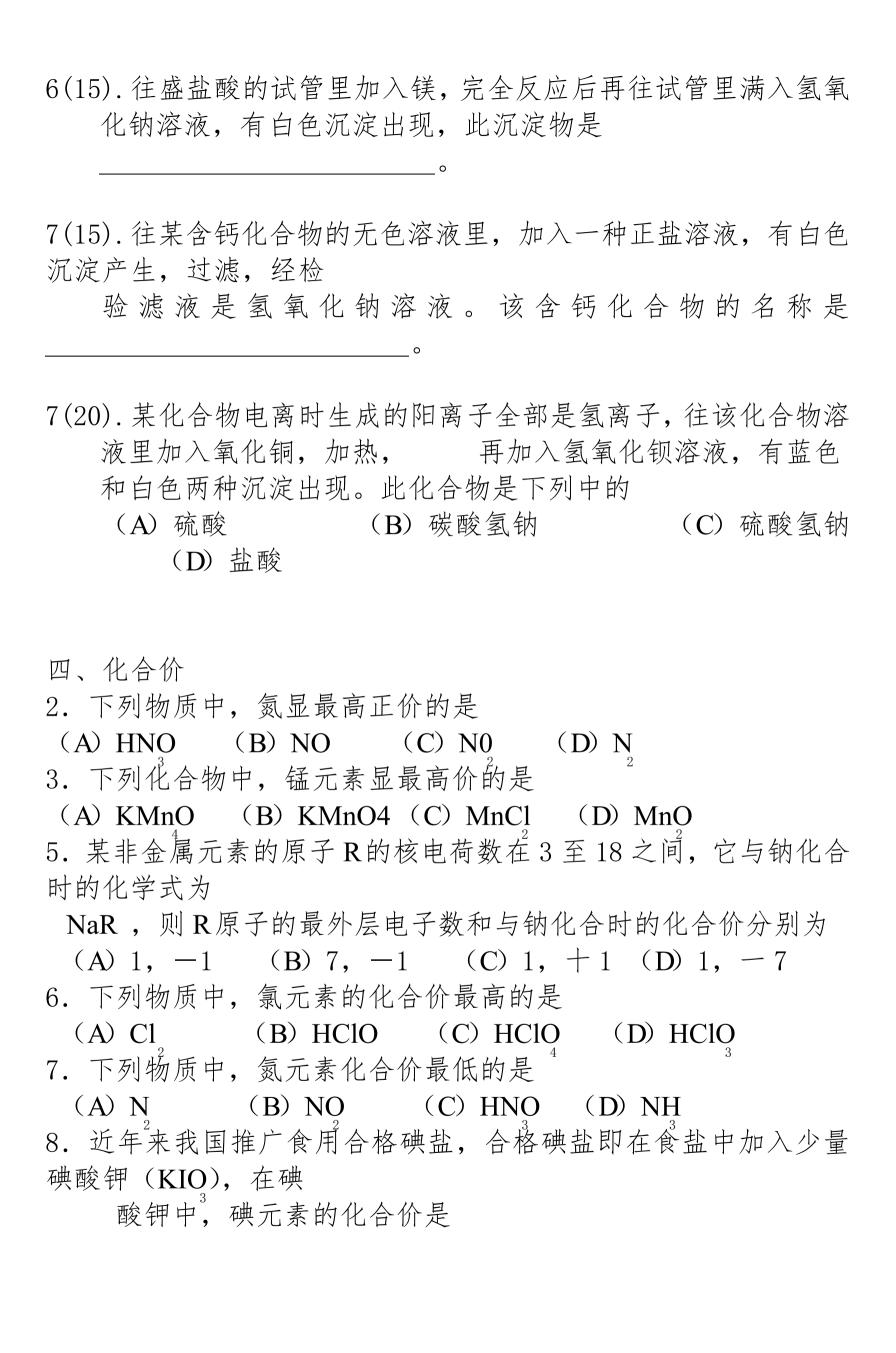
制取氧气 (C)水通直流电得到氧气 氧气 8(3).下列变化中,属化学变化的是	(D) 加热氧化汞得	
(A) 过滤食盐水	(B) 蒸发食盐溶	学液
(C) 玻璃管受热弯曲 入食盐溶液中	(D) 硝酸银溶液	 凌滴
9(2). 下列变化中,属于物理变化的是(A)氧化钙溶于水(C)水加热变成水蒸气	(B) 三氧化硫溶引(D) 加热高锰酸等	
化锰的混和物	(B) 加热氯酸钾和二	二氧
(C) 银和稀盐酸 (I) 铜和硝酸汞溶液	
二、反应类型 1(17). 下列各组物质混合,能发生复分解 氧化物的是	反应,且生成物有酉	夋性
	(B) 氢氧化铁和硝酸(D) 硫酸钾溶液和氢	
2(10). 下列化学反应中,属化合反应的; (A) 氯酸钾和二氧化锰受热办		上钾
溶液中 (C) 水滴人生石灰 液	(D) 铁钉置入硫酸钼	同溶

2(18). 下列各组物质,能发生复分解反应,但无沉淀生成的是 (A) 硝酸钠溶液和氯化钾溶液 (B) 氢氧化铁和硫酸

(C) 碳酸钙和氯化钠溶液 (D) 硝酸银溶液和氯化

镁溶液

3(14).	下列	各组:	溶液	混合,	能发生	复分解	反	应,	既无	沉淀	已又无
气体产生!	的是										
	(A)	氯化	钾溶	液和硝	j 酸化	(F	3)	氢氧	化钠	溶液	更和硫
酸											
(C)		碳酸	钠溶	液和硫	酸	(I))	硫酸	镁溶	液和	2氢氧
化钾溶液											
4(16).					氧化铜						
		化合						置换		.	
									一还,		
	下列	各组	物质	混合,	能发生	复分解	反.	应且	有沉	淀生	三成的
一组是											
,	(A)	氢氧	化铜	和硝酸	-	(F	3)	氢氧	化钡	溶液	反和硫
酸		.112		11		,			11-1-XX		~~ 11
	(C)	碳酸	钙和	盐酸		(I))	硝酸	钾溶	液和	口稀盐
酸	1 111	-	<i>-</i>	1- 11 NH	- 1- 1)	\\ _		— —			
					和气体,				<u> </u>		
		置换							解反	- '	
		碱、「	酸、	盐间既	能发生	复分解	反.	应,	又无	沉沥	己和气
体放出的;	-									1 - A)	
	(A)	盐酸	和碳	酸钙		(]	B)	硫酸	和氢	、氧化	比钾溶
液	(- N	- 1)	,	11		\		·		3)	
,					酸钠溶液					化包	贝溶液
					能发生复					.1.	
(A)					-						
					钠						
8(7). 实			中持	是取碘,	有如下	化学员	え应	: 2N	VaI +	Cl_{2}	=====
2NaCl + I	9										
,		禹类型									
		分解。							合反		
,		置换。	/						分解。		
9(8). 汽	车的	尾气口	中含	有氮的	氧比物,	它是:	城市	下空气	气污多	杂源.	之一,


汽车行驶时, 由于电火 花的作用, 汽缸里有一系列比学反应发生, 其中有 N + O 放电 2NO === 2NO 2NO + O这两个反应所属的反应类型是 (A) 化合反应 (B) 分解反应 (C) 置换反应 (D) 复分解反应 三、复分解 1(15). A、B、C、D四支试管内盛有无色透明溶液,已知一是盐酸, 一是碳酸钠, —是氯化钙, 一是硝酸钠. 将 A 试管溶液分别加 到 B、C、D试管内,可观察到 B 试管中液体出现白色浑浊, 其余各试管溶液仍澄清透明, 也无气泡产生。根据上述现象可 判断 A 试管盛的是_____溶液, B试管盛的是 溶液。 2(12). 往澄清石灰水加入一种钠盐(正盐),有白色沉淀出现,往 该沉淀加入稀硝酸, 沉淀消失并有气体放出。这种钠盐是 (填物质 化学式)。 2(15). 一包白色粉末,可能含有碳酸钙、氧化钠、硝酸钡、硫酸钾。 取其置于水中, 搅 拌得无色溶液和沉淀, 过滤。滤液可使酚酞试液变红, 沉淀加 稀硝酸不溶解。则可判断组成这包白色粉末的物质是

2(20).某无色溶液能使紫色石蕊试液变红。取少量于试管中进行下列实验:滴入氯化

钡溶液能产生不溶于稀硝酸的白色沉淀; 过滤, 往滤液滴入

硝酸银溶液,又能产生不溶液滴入紫色石蕊试液,试液		
(A) 硫酸钠溶液 (D) 硫酸	B) 碳酸钠溶液	(C) 盐酸
3(14).某固态物质可能含有氧化它置于水中,有白色沉淀出往该溶液滴入硝酸银溶液,这固态物质是由	现,该沉淀不溶于稀。 又有不溶于稀硝酸的自	哨酸,过滤,
3(15). 某比合物可能含有的离子把该化合物置于水中,能溶化 物溶液,有蓝色沉	解成蓝色溶液. 让该沟	容液加入氢氧
3(19). 把氯化钡溶液滴人某溶液则该溶液可能是	,产生不溶于稀硝酸	的白色沉淀,
(A) 盐酸 (C) 硝酸银	(B) 硫酸 (D) 硫酸,	也可能是硝
酸银		
3(20). 某碱 A的实验变化如下: 该碱是下列中的		
(A) $Cu(OH)_2$ (D) $Ca(OH)_2$	(B) KOH	(C) NaOH
4(15).某粉末是氢氧化钾、氯化一种。把它投入水,得无色流硫酸,产生不溶于稀硝酸的	容液, 把溶液分作两份	,一份滴人

也产生不溶于稀硝酸的白色沉淀。则该粉未是

(A) +1 +5	(B) $+2$	(C) $+3$	(D)
9. 亚硝酸钠 (NaNO) 中毒, 亚硝酸钠中氮 元素的化合价是	2. 是工业用盐, 其名	外表似食盐,	误食会使人
(A) 十1 十4	(B) $+2$	(C) +3	(D)
五、化学方程式 1(9) . 写出下列反应的 (1) 木炭和氧化等 锈的主要成分是氧化铁)	铜混合加热	(2) 用硫	竣除铁锈(铁
2(10).写出下列反应的 (1)硫酸镁溶液剂		(2) 氧化钐	5和硫酐
3(10).写出下列反应的 (1)磷在空气中燃 氧化碳		(2) 氢氯化	2钠溶液和二
4(8) . 写出下列反应的 (1)氢气通过灼热		(2) 氢氧化	铜和盐酸
5(10).写出下列反应的 (1)氧化钡和水 氧化钠溶液	化学方程式:	(2) 氯化	.铁溶液和氢
用含 A1(OH)的药	中燃烧 含有少量盐酸,如		
. 物,以减少	少胃中盐酸的含量。	,这反应的化	1.学方程式是

7(12). 写出下列物质反应的化学方程式:
(1) 石油产品中的残余硫酸,可用氢荡化钠溶液洗涤。这
反应的化学方程式是
(2) 实验室用大理石跟稀盐酸制取二氧化碳
8(12). 写出下列反应的化学方程式:
(1) 实验室加热氯酸钾制取氧气(加少量二氧化锰作催化
剂)
(2) 硫酸和氢氧化铜反应
9(9). 写出下列反应的化学方程式:
(1) 实验室用锌和盐酸反应制取氢气
(2) 我国古代, 劳动人民就会利用燃烧天然气(主要成分是
甲烷) 熬制井
盐。甲烷在空气中完全燃烧
六、化学符号
1(7). 写出表示下列微粒的化学符号
3 个水分子: 3 个氢氧根离子:
2(7). 写出表示下列微粒的化学符号
2 个镁原子2 个镁离子
<u> </u>
4(4). 写出表示下列微粒的化学符号
1 个氯原子 2 个氯分子
5(11). 写出一种化学符号, 使它既表示一种元素、这种元素的一
个原子,又能表示它
的化学式:。
七、化学式
ロ・ 107 人

1(8). 填写下列物质化学式:	
氧化铝:	氧化镁:
	硫酸亚铁:
2(8). 写出下列物质化学式或名称。	CuCl :
硫酸铝:	$Fe(NO_3)_3$:
3(9). 写出下列物质化学式 熟石灰:	氯化亚铁:
 硝酸铝:	碳酸铜:
4(6). 写出下列物质化学式: 二氧化碳:	氯化铁:
氢氧化镁:	硝酸铝:
5(8). 写出下列物质化学式: 氧 化 钾:	_ 硫酸锌:
氯化铝:	氢氧化亚铁:
6(11). 写出下列物质的化学式: 氧化钠:	硝 酸 锌:

	硫酸铝:		氯化亚铁:
7(10).	写出下列物质的化学式: 氧化铁:		氯化亚铜:
	硝酸锌:		硫酸铝:
8(10)	写出下列物质的化学式:水:		氧化铝:
硫酸盐		一种酸式盐,	既是钠盐又是
	写出下列物质的化学式: 氧化:		硝酸铁:
	氢氧化铝:		熟石灰:
			

八、计算

- 1(1). 把 40₀C 时的氯化钾饱和溶液 70 克蒸干,得到 20 克氯化钾, 计算 40₀C 时氯化钾的溶解度。
 - 1(2). 煅烧1吨含杂质10%的石灰石(主要成分是碳酸钙, 所含杂质不反应), 可制得氧化钙多少吨?
 - 2(1). 1吨 Fe O 80%的赤铁矿含铁多少吨?
 - 2(2).10 克氢氧化钠溶液和足量的盐酸中和,生成 5.85 克氯化钠。计算该氢氧化钠溶液的溶质的质量分数。
 - 3(1). 多少克水里含有 4 克氢元素?
 - 3(2). 浓度为10%的硝酸溶液126克,能中和多少克氢氧化钠?

- 4(1). 天然气的主要成分是甲烷(CH)。计算 2 克甲烷中含氢元素多少克?
- 4(2). 含杂质的锌片 40 克与足量的稀硫酸完全反应, 生成氢气1.2克, 计算该锌片中单质锌的质量分数(杂质不与稀硫酸反应)。
- 5(1). 把50克30%的氯化钾溶液稀释到20%,需加水多少克?
- 5(2). 把氢氧化钠和氯化钠的混和物溶于水,能与10%的盐酸溶液73克完全作用,计算混和物里氢氧化钠的质量是多少克?
- 6(1). 20₀C时食盐的溶解度是 36 克,实验室在 20₀C时配制 68 克的 饱和食盐溶液,需食盐和水各多少克?
- 6(2). 在古代,我国劳动人民就已知道铁能从硫酸铜溶液里置换出铜。计算如果用浓度为10%的硫酸铜溶液320克,能与多少克铁完全反应?
- 7(1). 5克二氧化硫里含硫多少克?
- 7(2). 把硝酸钠与氯化钠的混合物溶与水, 刚好能跟 5%的硝酸银溶液 340 克完全反应, 计算该混合物里氯化钠的质量。
- 8(1). 绿色植物在晴天时,通常每天每平方米叶片约需吸收5克二氧化碳来进行光合作用。试计算表面积为1.76平方米的叶片,在10天内能吸收多少克二氧化碳?相当于多少克碳?
- 8(2). 把某铜锌混合物 15 克置于足量稀硫酸中,完全反应后生成 0.4 克氢气,计算该混合物里铜和锌的质量。
- 9(1). 20℃时,34.3 克氯化铵饱和溶液中含有25克水。计算20℃时氯化铵的溶解度。
- 9(2). 高炉炼铁的主要反应是: FeO+3CO 高温 2Fe+3CO 计算 5 吨含氧化铁 80%的铁矿石,可以炼出多少吨铁

十、鉴别

. 要鉴别盐酸、水和氢氧化钾,可选用-	一种试剂,这试剂是
溶液。	
5(5). 鉴别氢氧化钾溶液、水和稀盐酸,可选(A) 紫色石蕊溶液(C) 澄清石灰水	月下列试剂中的 (B) 无色酚酞溶液 (D) 氯化钡溶液
6(20). 要鉴别氢氧化钙、硫酸、氢氧化钠三和下列试剂中的	中无色溶液, 可选用
(A) 碳酸钠溶液 (C) 氯化铁溶液	(B) 氯化钡熔液 (D) 二氧化碳
7(11). 为区别氧气、氢气、二氧化碳、空气四用下列方法中的	日种无色气体,可采
(A) 加入水 溶液	(B) 加入紫色石蕊
	D) 用燃着木条试验
7(17). 要鉴别水、盐酸、氢氧化钠溶液和氯化列试剂中的	比钠溶液, 可选用下
	B) 酚酞试液和硝酸
(C) 石蕊试液和硝酸银溶液 (D)	锌片和氯化钡溶液
十一、金属强弱1(19). 要除去氯化锌溶液中混有的少量氯化银	司, 可加入下列试剂
中的 (A) 铁片 (B) 锌片 (C) 铜片	† (D) 氢氧化
钠溶液	
2(14). 有 X、Y、Z 三种金属,如果把 X和 Y分溶解并产生气体,	别投入稀硫酸中, X
Y不反应。如果把Y和Z投入硝酸汞溶液	夜中, 过一会儿, 可
以看到Y表面有汞覆盖,Z没有变化。则X、	Y、Z三种金属的活

2(19). 要除去银粉中混有少量铜粉,	可采用下列中的
(A) 加足量水, 搅拌, 过滤	(B) 加足量盐酸, 过
滤	
(C) 加足量硝酸银溶液, 过滤	(D) 加足量氢氧化钠
溶液, 过滤	
4(19). 现有 A、B、C三种金属, B能-	与稀硫酸反应,放出氢气,A、
C均与稀硫酸不反	
应。A能从C的盐溶液中置换b	出 C则 A、B、C种金属活动性
由强到弱的顺序是	
(A) A, B, C	(B) B , C , A
(C) C , A , B	(D) B , A , C
5(20). 现有 A、B、C、D 四种金属,	把 B 投入 A 盐溶液中, 有 A
析出; 把D投入A盐	
溶液中,有A析出;把A投入(C盐溶液中, 有 C析出: 把 A
B、C、D投入盐酸中,只有D产	
则这四种金属活动性由强到弱的	
(A) A , B, C, D	
(C) D, B, A, C	
6(4). 某金属 x 能和稀硫酸反应,放出	
铜。	
7(9). 有 A、B 和铜三种金属,如果把	A和 B分别投入稀硫酸中 A
溶解并产生气体, B 不	
反应。如果把铜投入B盐溶液中,	过一会儿可看到铜表面有 R
覆盖。则这三种金属 活动性	
(A) $A \setminus B$ 铜	(B) A、铜、B
(C) 铜、A、B	(D) B、铜、A
7(14). 要除去硫酸锌溶液里混有的少	
(填化学式)。	
9(2). 在 Cu、Hg、Fe、Zn、K、Ag六和	油 会 屋 出 一 会 屋 活 动 州 县 路 的
和目 (· 持 夕 · 升 ·)	了亚/的了,亚/的/口·纳/王联/虫的
9(13). 要除去硫酸亚铁溶液里混有的	1小昌硫酸钼 可加入法昌的
3(10), 女际石则取业坑份似土,此作时	

种粉末的名称是。
十二、判断方程式 1(12). 下列化学方程式中,正确的是 (A) Zn + 2NaCl === ZnCl , +2Na (B) 2Fe +6HCl === 2FeCl
+3H ↑
² (C) BaCl +H SO===BaSO↓ +2HCl (D) Cu +O 2 <u>Δ</u> 2CuO 2(12). 下列化学方程式中, ⁴ 正确的是
(A) 2Zn +2HCl ===ZnCl+H ↑ (B) 3Fe+O 点燃
Fe O (C) $2NaOH ===Na O+HO (D) Fe+2HC1===FeC1 +H 1$
3(13). 下列化学方程式中, 正确的是
(A) $2Ag + Cu(NO$) === $Cu + 2AgNO$ (B) $Na + Cl$ 点燃 $NaCl$ (C) K $O + HO == ^{3}2KOH (D) Na SO + \overline{2KNO} = \overline{KSO}$
+2NaNO
4(12). 下列化学方程式中,正确的是
(A) Fe+O 点燃 FeO (B) 2Ag + CuSO ====
Cu+AgSO 2 ———————————————————————————————————
$(C)^{2} 2Cu + O_{2} \Delta 2CuO \qquad (D) \qquad Cu + 2HNO = Cu(NO)_{3/2}$
$+$ H $_{3}$ \uparrow
5(12). 下列化学方程式中,正确的是
(A) NaNO $_{3}$ +KCl === NaCl + KNO $_{3}$ (B) Fe + 2HCl === FeCl
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
(C) Fe $O_{2}^{2} + O_{2}^{2} = 2Fe(OH)_{3}$ (D) $O_{2}^{2} = 0$
2FeO 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3 2 3
7(10). 下列化学方程式中,正确的是
(A) Fe + 2HCl === FeCl + H₂↑ (B) 2Fe + O 点燃
2FeO 2 = ====
(C) $2\text{Fe} + \text{CuCl} = 3\text{Cu} + 2\text{FeCl} = 3\text{Cu} + 2\text{Cu} $
$\Gamma = \mathbf{CO} + \mathbf{Z}$

FeSO+ Zn

1(1). 下列对于溶质的说法, 正的是		
(A) 溶质只能是固体 (B) 溶质只能是液体	
(C) 溶质只能是气体 (I	D) 溶质可以是固体,	也可以是
液体或气体		
1(2). 20 ₀ C 时,要使不饱和的氯化铵	?溶液变为饱和溶液,	可采取下
列措施中的		
(A) 温度升高至 60 _℃ (
	加入20℃氯化银	
2(1). 把 40 ₀ C 氯化铵饱和溶液冷却至		下析出, 剩
余的溶液是 (D) 孫溶液	(四) 地子流流	(D) T
(A) 浓溶液 (B) 稀溶液 饱和溶液	(C) 饱和溶液	(D) 不
2(2). 把 100 克 90%的硫酸稀释为	10%	海今 USO
的质量为		
(A) 90 克 (B) 80 克	(C) 10 克	(D) 9克
3(1). 溶液的浓度是表示	(0) 10 /0	(D) 0)
(A) 100 克溶剂所溶解溶质的量	变(B) 物质在水里的	勺溶解性大
小		
(C) 溶液质量的大小	(D) 一定量溶液	 更所含溶
质的量		
3(2). 200C时,100克水溶解A物质	2 克可达饱和; 100	克水溶解 B
物质 15 克可达饱		
和,50克水溶解 c 物质 5 克	可达饱和。则A、B、	C 在 200C
溶解度由大到顺序是		
(A) A , B , C	(B) C , B ,	
(C) B , C , A		
3(3). 把 100 克 10%食盐溶液和 100	0克5%食盐溶液混合	3, 其溶液
质量为 (D) 200 丰	(C) 010 ±	(D) 015
(A) 100 克 (B) 200 克 古	(C) 210 兄	(D) 215
克 4(1). 在 20 ₀ C 时, 50 克水溶解食盐	10 古可社编和 1/1-	下光工
4(1). 在 2000 PI, 50 九小谷畔 R 血	10 九号处地型,从	一大人反血

溶解度的说法正确

的是

- (A) 食盐溶解度是 18 克 (B) 食盐溶解度是 36 克
- (C) 20₀C 时, 食盐溶解度是 18 克 (D) 20₀C 时, 食盐溶解度 是 36 克
- 4(2). 把 20 克 5%的硝酸钾溶液稀释至 200 克,则稀释后溶液含硝 酸钾的质量为
- (A) 10 克 (B) 1 克 (C) 0. 1 克 (D) 0. 01

克

5. 把 200C 时饱和的食盐溶液 13. 6 克蒸干,得到 3. 6 克食盐, 则 200C 时食盐的溶

解度是

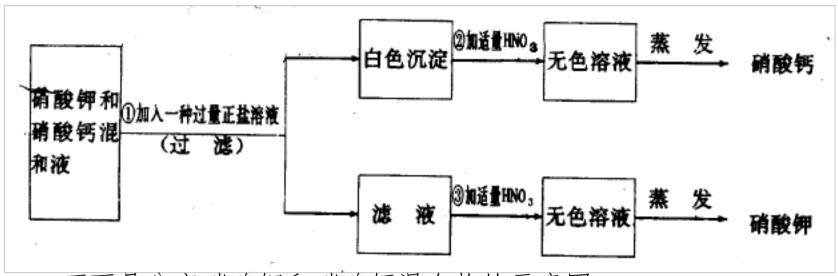
- (A)3 . 6 克 (B) 13. 6 克 (C) 100 克 (D) 36 克
- 6. 把 50 克 20%的硝酸钾溶液稀释成 10%的硝酸钾溶液,此时 溶液中含硝酸钾质

量为

- (A) 1 克 (B) 10 克 (C) 50 克 (D) 20 克

7(1). 下列关于硝酸钾溶解度的说法,正确的是

- (A) 20₀C时, 20 克硝酸钾溶解在 100 克水里, 所以 20₀C时硝 酸钾的溶解度是20克
- (B) 20₀C时, 把 20 克硝酸钾溶解在水里制成饱和溶液, 所以 20°C 时硝酸钾的溶解

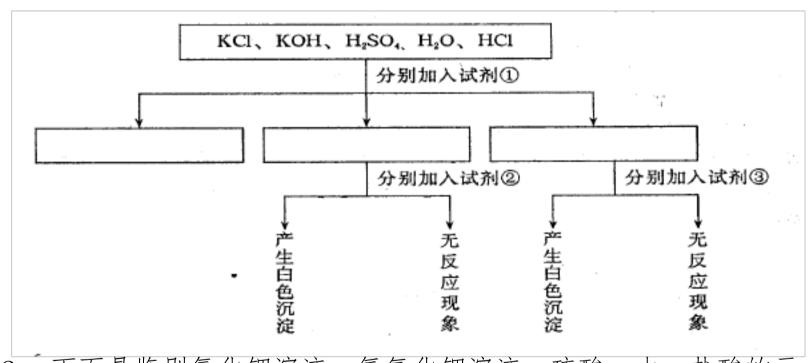

度是 20 克

(C) 把 31. 6 克硝酸钾溶解在 100 克水里,形成饱和溶液, 所以硝酸钾的溶解度是

31.6克

- (D) 20₀C 时,把 31.6 克硝酸钾溶解在 100 克水里,形成饱 和溶液,所以20₀C时,硝 酸钾的溶解度是31.6 克
- 7(2). 往60克20%的氯化钾溶液里加入20克水,此时溶质的质量 分数为

(A) 20% (B) 15% 十四、式量	(C) 12%	% (D) 10%
1(10). 填写下列式量总和: 5O 2:		2KClO ₃ :
2(11). HPO 的式量是:	(NH) ₂ SO4 的式量是:
3(9) . HS 的式量是:	2Ca	iO 的式量是:
4(9) . O 的式量是:		NH 的式量是:
5(7) . NH的式量是:	2P	O 的式量总和是:
6(9) . N 的式量是:	(NH) _{4 2} SO4的式量是:
7(9) . Cl ₂ 的式量是:	_ C	HOH的式量是:
8(8). 化肥硫酸铵[(NH) SO]的式量; 9(6). 葡萄糖的化学式为 CHO, 它	是的式量是_	o o
十五、推断		


1. 下面是分离硝酸钾和硝酸钙混合物的示意图:

回答:(1) 加入的正盐是:_____

(2) 写出①、②、③所起反应的化学方程式。

:

③**:**

2. 下面是鉴别氯化钾溶液、氢氧化钾溶液、硫酸、水、盐酸的示意图。

回答:

- (1) 加入的试剂(填试剂名称): 试剂①: _____ 试剂②: _____ 试剂③:_____
- (2) 在上述示意图的方框里填上物质的化学式。
- (3) 分别写出加入试剂②和试剂③反应的化学方程式:

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/76600404003
0010033