双原因方差分析措施

● 双原因试验的方差分析

在实际应用中,一种试验成果(试验指标)往往 受多种原因的影响。不但这些原因会影响试验成果, 而且这些原因的不同水平的搭配也会影响试验成果。

例如:某些合金,当单独加入元素A或元素B时,性能变化不大,但当同步加入元素A和B时,合金性能的变化就尤其明显。

统计学上把多原因不同水平搭配对试验指标的 影响称为交互作用。交互作用在多原因的方差分析 中,把它当成一种新原因来处理。

我们只学习两个原因的方差分析,更多原因的问题,用正交试验法比较以便。

一无交互作用的双原因试验的方差分析

数学模型

假设某个试验中,有两个可控原因在变化,原因A有a个水平,记作 A_1 , A_2 , ..., A_a ; 原因B有b个水平,记作 B_1 , B_2 , ..., B_b ; 则A与B的不同水平组合 A_iB_j (i= 1, 2, ..., a; j=1, 2, ..., b) 共有ab个,每个水平组合称为一种处理,每个处理只作一次试验,得ab个观察值 X_{ij} , 得双原因无反复试验表

双原因无反复 (无交互作用) 试验资料表

原因 B 原因 A	B_1	B_2	•••	B_{b}	$T_{i.} = \sum_{j=1}^{b} X_{ij}$	$\overline{X}_{i.} = T_{i.}/b$
A_{l}	X_{11}	X_{12}	•••	X_{1b}	$T_{1.}$	$\overline{X}_{1.}$
•••	•••	•••	•••	•••	•••	•••
A_a	X_{a1}	X_{a2}	•••	X_{ab}	$T_{a.}$	$\overline{X}_{a.}$
$T_{.j} = \sum_{i=1}^{a} X_{ij}$	$T_{.1}$	$T_{.2}$	•••	$T_{.b}$	$T = \sum_{i=1}^{a} \sum_{j=1}^{b} X_{ij}$	
$\overline{X_{.j}} = T_{.j}/a$	$\overline{X}_{.1}$	$\overline{X}_{.2}$	•••	$\overline{X}_{.b}$		$\overline{X} = \frac{1}{ab}T$

> 无交互作用的双原因试验的方差分析

基本假设(1) X_{ii} 相互独立;

$$(2)_{X_{ij}}^{g} \sim N\left(\mu_{ij},\sigma^{2}\right)$$
,(方差齐性)。

线性统计模型 $X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$

其中
$$\mu = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}$$
 全部期望值的总平均

$$\alpha_i = \frac{1}{a} \sum_{i=1}^{b} \mu_{ij} - \mu = \mu_{ig} - \mu \quad$$
水平A_i对试验成果的效应

$$\beta_{j} = \frac{1}{h} \sum_{i,j}^{a} \mu_{ij} - \mu = \mu_{gj} - \mu \quad \text{水平B}_{j} 对试验成果的效应$$

$$\varepsilon_{ii} = X_{ii} - \mu_{ii}$$
 试验误差

$$\alpha_i = \frac{1}{a} \sum_{i=1}^b \mu_{ij} - \mu = \mu_{ig} - \mu \quad 水 \mathbf{T} \mathbf{A_i} \mathbf{对试验成果的效应}$$

$$\beta_j = \frac{1}{b} \sum_{i=1}^a \mu_{ij} - \mu = \mu_{gj} - \mu \quad 水平B_j 对试验成果的效应$$

$$\varepsilon_{ij} = X_{ij} - \mu_{ij}$$
 试验误差

特征:
$$\sum_{i=1}^{a} \alpha_i = 0$$
; $\sum_{i=1}^{b} \beta_i = 0$; $\varepsilon_{ij} \sim N(0, \sigma^2)$

要分析原因A,B的差别对试验成果是否有明显 影响,即为检验如下假设是否成立:

$$H_{01}: \alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $H_{02}: \beta_1 = \beta_2 = L = \beta_b = 0$

> 总离差平方和的分解定理

仿单原因方差分析的措施,考察总离差平方和

$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \overline{X})^2$$

可分解为: $SS_T = SS_A + SS_B + SS_E$

$$SS_A = b \sum_{i=1}^{a} (\overline{X}_{i.} - \overline{X})^2$$
 称为原因A的离差平方和, 反应原因A对试验指标的影响。

$$SS_B = a \sum_{i=1}^{b} (\overline{X}_{.i} - \overline{X})^2$$
 称为原因B的离差平方和, 反应原因 B 对试验指标的影响。

$$SS_E = \sum_{i=1}^{a} \sum_{j=1}^{b} (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} + \overline{X})^2$$

称为误差平方和,反应试验误差对试验指标的影响。

若假设
$$H_{01}, H_{02}$$
 成立,则: $X_{ij} \sim N(\mu, \sigma^2)$ 可推得: $\frac{SS_T}{\sigma^2} \sim \chi^2(ab-1)$ $\frac{SS_B}{\sigma^2} \sim \chi^2(b-1)$ $\frac{SS_E}{\sigma^2} \sim \chi^2((a-1)(b-1))$

将
$$\frac{SS_T}{\sigma^2}$$
, $\frac{SS_A}{\sigma^2}$, $\frac{SS_B}{\sigma^2}$, $\frac{SS_E}{\sigma^2}$ 的自由度分别记作

$$df_T, df_A, df_B, df_E$$
 , 则

$$F_A = \frac{SS_A/df_A}{SS_E/df_E} = \frac{MS_A}{MS_E} \sim F((a-1), (a-1)(b-1))$$

$$F_{B} = \frac{SS_{B}/df_{B}}{SS_{E}/df_{E}} = \frac{MS_{B}}{MS_{E}} \sim F((b-1), (a-1)(b-1))$$

$$F_{A} = \frac{SS_{A}/df_{A}}{SS_{E}/df_{E}} = \frac{MS_{A}}{MS_{E}} \sim F((a-1), (a-1)(b-1))$$

$$F_B = \frac{SS_B/df_B}{SS_E/df_E} = \frac{MS_B}{MS_E} \sim F((b-1), (a-1)(b-1))$$

对给定的检验水平 α ,

当 $F_A > F_a((a-1), (a-1)(b-1))$ 时, 拒绝 H_{01} ,即A原因的影响有统计意义。

当 $F_B > F_a((b-1),(a-1)(b-1))$ 时, 拒绝 H_0 ,即B 原因的影响有统计意义。

双原因(无交互作用)试验的方差分析表

方差起源	平方和	自由度	均方和	F值	F值临介值
原因A	SS_A	$df_{\scriptscriptstyle A}$	$MS_A = \frac{SS_A}{df_A}$	$F_A = \frac{MS_A}{MS_E}$	$F_{a}((a-1), (a-1)(b-1))$
原因B	SS_B	$df_{\scriptscriptstyle B}$	$MS_B = \frac{SS_B}{df_B}$	$F_B = \frac{MS_B}{MS_E}$	$F_a((b-1), (a-1)(b-1))$
误差	SS_E	df_E	$MS_E = \frac{SS_E}{df_E}$		
总和	SS_T	df_{T}			

注意 $df_E = df_T - df_A - f_B$, $SS_E = SS_T - SS_A - SS_B$

各原因离差平方和的自由度为水平数减一,总平方和的自由度为试验总次数减一。

双原因(无交互作用)试验的方差分析表

简便计算式:

$$SS_A = D_A - p$$
, $SS_B = D_B - p$

$$SS_E = R - D_A - D_B + p$$
, $SS_T = R - p$

其中:
$$D_A = \left(\sum_{i=1}^a T_{i.}^2\right)/b$$
, $p = T^2/ab$,

$$D_{B} = \left(\sum_{j=1}^{b} T_{.j}^{2}\right) / a, \qquad R = \sum_{i=1}^{a} \sum_{j=1}^{b} X_{ij}^{2}$$

例1 设甲、乙、丙、丁四个工人操作机器 I 、II 、III各一天, 其产品产量如下表,问工人和机器对产品产量是否有明显 影响?

机器 B 工人 A	I	II	Ш	$T_{i.} = \sum_{j=1}^{b} X_{ij}$	$\overline{X}_{i.} = T_{i.}/b$
— <u>—</u>	50	63	52	165	55.0
[N	47	54	42	143	47.7
M	47	57	41	145	48.3
-	53	58	48	159	53.0
$T_{.j} = \sum_{i=1}^{a} X_{ij}$	197	232	183	T = 612	
$\overline{X_{.j}} = T_{.j}/a$	49.3	58.0	45.8		$\overline{X} = 51$

解 基本计算如原表

$$R = \sum_{i=1}^{a} \sum_{i=1}^{b} X_{ij}^{2} = 31678 \qquad D_{A} = \frac{1}{b} \sum_{i=1}^{a} T_{i.}^{2} = 23495$$

$$D_B = \frac{1}{a} \sum_{j=1}^{b} T_{.j}^2 = 42040.67 \qquad p = \frac{T^2}{ab} = 31212$$

$$SS_T = R - p = 466$$
 $df_T = n - 1 = 11$

$$SS_A = D_A - p = 114.67$$
 $df_A = a - 1 = 3$

$$SS_R = D_R - p = 318.5$$
 $df_R = b - 1 = 2$

$$SS_E = SS_T - SS_A - SS_B = 32.83$$
 $df_E = df_A \cdot df_b = 6$

$$MS_A = SS_A/df_A = 38.223$$

$$F_{0.01}(3,6)=9.78$$

$$MS_B = SS_B/df_B = 159.25$$

$$F_{0.05}(3,6)=4.76$$

$$MS_E = SS_E / df_E = 5.47$$

$$F_{0.01}(2,6)=10.92$$

$$F_A = MS_A/MS_E = 6.98$$

$$F_{R} = MS_{R}/MS_{E} = 29.10$$

$$F_{0.05}(3,6) < F_A < F_{0.01}(3,6)$$
 $F_B > F_{0.01}(2,6)$

结论:工人对产品的产量有明显影响, 机器对产品的产量有极明显影响。 例2:某厂对生产的高速钢铣刀进行淬火工艺试验,考察回火温度A和淬火温度B两个原因对强度的影响。今对两个原因各3个水平进行试验,得平均硬度见表:

试验成果 Bj	B1 (1210°C)	B2 (1235°C)	B3 (1250°C)
A1 (280°C)	64	66	68
A2 (300°C)	66	68	67
A3 (320°C)	65	67	68

假设:不同组合水平下服从正态分布、相互独立、方差相等。

所需要处理的问题是:全部Xij的均值是否相等。

方差分析表:

方差起源	离差平方和	自由度	F值	F0.05(2,4)	F0.01(2,4)	明显性
原因A	1.56	2	FA=1.01	6.94	18.0	
原因B	11.56	2	FB=7.46	6.94	18.0	*
试验误差	3.1	4				
总误差	16.22	8				

$$SST = \sum_{i=1}^{3} \sum_{j=1}^{3} X_{ij}^{2} - \frac{T^{2}}{3 \times 3} = 16.22 \qquad SSA = \frac{1}{3} \sum_{i=1}^{3} T_{i.}^{2} - \frac{T^{2}}{3 \times 3} = 1.56$$

SSB =
$$\frac{1}{3} \sum_{j=1}^{3} T_{.j}^{2} - \frac{T^{2}}{3 \times 3} = 11.56$$
 SSE = SST - SSA - SSB = 3.1

 $F_A < F_{0.05}(2,4)$ A影响不明显。 $F_{0.05}(2,4) < F_B < F_{0.01}(2,4)$ B影响明显,因为

高速钢洗刀的硬度越大越好,所以因素B可取B3水平,即淬火温度1250°C为好,因素A水平的拟定,应考虑经济方便,取A1水平为好。

【例3】有四个品牌的彩电在五个地域销售,为分析彩电的品牌(原因A)和销售地域(原因B)对销售量是否有影响,对每个品牌在各地域的销售量取得下列数据,见下表。试分析品牌和销售地域对彩电的销售量是否有明显影响?

• 不同品牌的彩电在各地域的销售量数据								
• 品牌	• 销售地域(原因B)							
• (原因 A)	B_1 B_2 B_3 B_4 B_5							
A_1	365	350	343	340	323			
A_2	345	368	363	330	333			
A_3	358	323	353	343	308			
A.	288	280	298	260	298			

四、双原因方差分析例题

- 1、对原因A提出的假设为
 - H_0 : $μ_1 = μ_2 = μ_3 = μ_4$ (品牌对销售量没有影响)
 - H_1 : $μ_i$ (i = 1, 2, ..., 4) 不全相等 (品牌对销售量有影响)
- 2、对原因B提出的假设为
 - H_0 : $μ_1 = μ_2 = μ_3 = μ_4 = μ_5$ (地域对销售量没有影响)
 - H_1 : $μ_j$ (j = 1, 2, ..., 5) 不全相等 (地域对销售量有影响)

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/766021030211010230