§3.8.1 Detailing of HS bolted connection

1.A connection with high-strength bolts is classified as either a bearing or slip-critical connection.

Bearing

- Slippage acceptable
- Shear and bearing on the connector

Slip-critical

- Slippage unacceptable (Proper installation)
- Sufficient shear and bearing strength in overload that causes slip.
- Used in the important connection

2. Bolt installation

- 1) Tightening methods
 - A. Turn of the Nut (扭角法)
 - B. Calibrated wrench tightening (扭矩法)
 - C. Twist-off-type tension-control bolt

(拧断型拉力控制螺栓)

D. Direct tension indicator (拉力测量仪)

A. Turn of the Nut

B. Calibrated wrench tightening

C. Twist-off-type tension-control bolt

Twist-Off Bolt Method

1. NUT/WASHER FACE Friction Variability 2. NUT/BOLT THREAD Friction Variability 3.

SHEAR-GROOVE Diameter Variability

D. Direct tension indicator

Direct Tension Indicators

Uniform preload (residual load)

- Bolt loosens due to cycle loads of vibration.
- 2. Sealing face surface damage.
- 3. No compression.
- 4. Cracking.
- 5. Flange rotation.
- 6. Yielding of bolts.
- 7. Over compression of gasket.

2) Preload design

The following factors are considered as

- Reduction of material properties (0.9)
- Reduction of over tensioning of bolt (0.9)
- Reduction of shear which will decrease tension strength of bolt (1.2)
- safety factor 0.9

Bolt preload is

$$P = \frac{0.9 \times 0.9 \times 0.9}{1.2} A_e f_u$$

Grad e	Nominal diameter					
	M16	M20	M2 2	M2 4	M27	M30
8.8	80	125	150	175	230	280
10.9	100	155	190	225	290	355

 A_e —bolt effective area ;10.9100155190225290 f_u —bolt tension strength, f_u =830N/mm² for grade 8.8 and f_u =1040N/mm² for grade 10.9

3) Friction coefficient

Friction coefficient depends on the surface treatment

and the steel grade. Table 7.2 for china

Treatment of surface	Coefficient of friction (µf)
Surfaces not treated	0.20
Surfaces blasted with short or grit with any loose rust removed, no	0.50
Surfaces blasted with shot or grit and hot-dip galvanized	0.10
Surfaces blasted with shot or grit and spray-metallized with zinc	0.25
(thickness 50-70µm)	
Surface s blasted with shot or grit and painted with ethyl zinc silicate	0.30
coat (thickness 30-60 µm)	
Sand blasted surface, after light rusting	0.52
Surfaces blasted with shot or grit and painted with ethyl zinc silicate	0.30
coat (thickness 60-80 µm)	
Surfaces blasted with shot or grit and painted with alkali zinc silicate	0.30
coat	
Surface blasted with shot or grit and spray metallized with aluminium	0.50
(thickness > 50 μm)	0.50
Clean mill scale	0.33
Sand blasted surface	0.48
Red lead painted surface	0.10

§3.8.2 Strength of HS bolted connection

(1) Behavior of HS bolt

N₁

a

(2) Shear capacity of single bolt

For the slip-critical bolt,

$$N_v^b = 0.9n_f \cdot \mu \cdot P$$

where:

- 0.9—reciprocal of resistance factor γ_R (γ_R =1.111);
- n_f —number of friction surface;
- µ--friction coefficient
- P-design value of preload

For the bearing type bolt,

Shear capacity is

$$N_v^b = n_v \frac{\pi d_e^2}{4} f_v^b$$

Bearing capacity is

$$N_{\rm c}^{\rm b} = d \sum t f_{\rm c}^{\rm b}$$

Strength is

$$N_{\min}^{b} = \min\left\{\!\!N_{\nu}^{b} \ N_{c}^{b}\right\}$$

(3) Tension capacity of single bolt

For the slip-critical bolt,

$$N_t^{b} = 0.8P$$

For the bearing type bolt,

$$N_t^b = A_e f_t^b = \frac{\pi d_e^2}{4} f_t^b$$

where: A_e--Effective area of bolt;

 d_e --Effective diameter of bolt; f_t^b --design value of bolt tension strength The results is approximately equal

(4) Combined tension and shear

For the slip-critical bolt,

$$\frac{N_t}{N_t^b} + \frac{N_v}{N_v^b} \le 1$$

For the bearing type bolt,

$$\sqrt{\left(\frac{N_v}{N_v^b}\right)^2 + \left(\frac{N_t}{N_t^b}\right)^2} \le 1$$

And to avoid bearing failure, should also satisfy as

$$N_{v} \leq \frac{N_{c}^{b}}{1.2}$$

 N_t , N_v - Design value of tension and shear load of single bolt N_t^b , N_v^b - Design value of tension and shear capacity of single bolt **1.2 is reduction of bearing capacity due to the tension of bolt** 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/808103115032006054</u>