江西省部分学校 2024-2025 学年高二上学期 10 月联考

本试卷满分 100 分, 考试用时 75 分钟。

注意事项:

1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:人教版必修第一册、必修第二册选择性必修1第一章和第二章。

- 一、选择题: 本题共 14 小题,每小题 3 分,共 42 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
- 1. 发展绿色甲醇产业有助于减少温室气体排放和空气污染。"零碳甲醇燃料"燃烧

 $\lceil 2CH_3OH(g) + 3O_2(g) = 2CO_2(g) + 4H_2O(g)$] 的过程中焓变和熵变均正确的是

A.
$$\Delta H > 0, \Delta S < 0$$

B.
$$\Delta H < 0, \Delta S < 0$$

C.
$$\Delta H > 0, \Delta S > 0$$

D.
$$\Delta H < 0, \Delta S > 0$$

- 2. 下列关于中和反应反应热测定实验的说法错误的是
- A. 可以用铁棒代替玻璃搅拌器
- B. 用同一支温度计测量温度可减小实验误差
- C. 反应物应一次性加入, 且不能有液体溅出
- D. 稀溶液中, 1molHCl 与 1molNaOH 完全反应放出的热量等于 57.3kJ
- 3. 已知下列热化学方程式:

①
$$\frac{1}{2}$$
CH₄(g) + O₂(g) = $\frac{1}{2}$ CO₂(g) + H₂O(g) $\Delta H_1 = akJ \cdot mol^{-1}$

②
$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$$
 $\Delta H_2 = bkJ \cdot mol^{-1}$

$$3\frac{1}{2}CH_4(g) + O_2(g) = \frac{1}{2}CO_2(g) + H_2O(l)$$
 $\Delta H_3 = ckJ \cdot mol^{-1}$

$$(4) CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(1)$$
 $\Delta H_4 = dkJ \cdot mol^{-1}$

下列关系式中正确的是

A
$$a < c < 0$$

B
$$h > d > 0$$

C
$$2a = b < 0$$

A.
$$a < c < 0$$
 B. $b > d > 0$ C. $2a = b < 0$ D. $2c = d > 0$

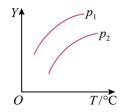
高级中学名校试卷

- 4. 下列事实不能用勒夏特列原理解释的是
- A. 用排饱和食盐水的方法收集氯气
- B. 开启啤酒后, 瓶中马上有泡沫产生

C. 在食品包装袋内加入铁粉包

- D. 高压有利于合成氨的反应
- 5. 下列陈述 I、II 均正确且有因果关系的是

选项	陈述I	陈述 II
A	可用铝槽车运输浓硫酸	铝与浓硫酸在常温下不发生反应
В	$NH_4^+ + OH^- \stackrel{\triangle}{=} NH_3 \uparrow + H_2O$	可以用 NaOH 溶液和蓝色石蕊试纸检验 NH ₄
С	Mg 的金属活动性强于 Al	Mg-Al-NaOH 溶液形成的原电池装置中 Al 为正极
D	葡萄酒中添加适量的SO ₂	适量的SO ₂ 可防止葡萄酒氧化变质


A. A

B. B

C. C

D. D

- 6. 下列说法正确的是
- A. $\Delta H > 0$ 、 $\Delta S > 0$ 的反应在较低温度下能自发进行
- B. 对于能够自发进行的吸热反应, 其原因是体系有自发向混乱度增加的方向转变的倾向
- C. 催化剂能够改变反应途径,降低反应的活化能,从而增加活化分子百分数,增大反应限度
- D. 活化分子之间发生的碰撞一定是有效碰撞
- 7. 在一密闭容器中发生可逆反应 A(g) + 2B(g) f 2C(g) $\Delta H < 0$, 平衡时, Y 随温
- 度、压强的变化关系如图所示,下列说法正确的是

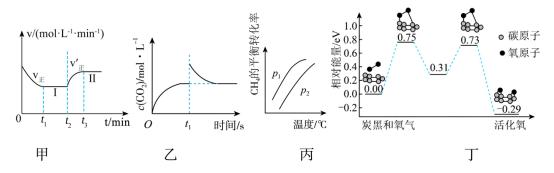
- A. $p_1 < p_2, Y$ 可表示 B 的物质的量
- B. $p_1 > p_2, Y$ 可表示 A 的质量分数
- C. $p_1 < p_2, Y$ 可表示 B 的转化率
- D. $p_1 < p_2, Y$ 可表示混合气体的平均相对分子质量

高级中学名校试卷

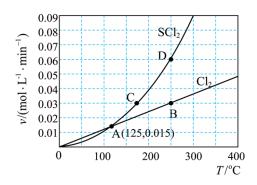
8. 一种具有抗菌作用的医药中间体的结构如图。下列说法错误的是

- A. 分子式是 C₁₃H₁₄O₄
- B. 分子中含有 5 种官能团
- C. 可以发生取代反应、氧化反应和加成反应
- D. 能与 NaHCO₃溶液反应放出 CO₂
- 9. 某化学兴趣小组以镁与盐酸的反应为研究对象,设计了四组实验探究反应物浓度、反应温度和催化剂三个因素对化学反应速率的影响,数据如表。下列说法错误的是

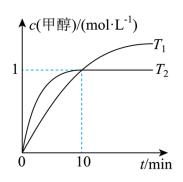
实验编号	Mg 的 质量/g	HCl 溶液(过量) 浓度 /(mol·L ⁻¹)	温度/℃	催化剂	产生等体积 $ m H_2$ 所需时间/ $ m s$
1)	1.0	1.0	20	无	120
2	1.0	c_1	30	无	80
3	1.0	1.0	30	有	70
4	1.0	2.0	20	无	90


- A. $c_1 = 1.0$
- B. 实验①和④可探究反应物浓度对化学反应速率的影响
- C. 对比实验①,实验②升高反应温度,活化分子总数增大,化学反应速率加快
- D. 实验①和③可探究催化剂对化学反应速率的影响
- 10. 下列化学方程式或离子方程式或电极反应式的书写正确的是
- A. 少量 SO_2 通入 KClO 溶液中: $SO_2 + ClO^- + H_2O = SO_4^{2-} + Cl^- + 2H^+$
- B. 将硝酸加入 K_2S 溶液中: $H^+ + S^{2-} = H_2S$ 个
- C. 锌-铜-稀硫酸电池的负极反应式: $Zn 2e^- = Zn^{2+}$

- D. 丙烯发生加聚反应的化学方程式: $nCH_2=CHCH_3 \xrightarrow{\text{$(d)}} + CH_2 CH_2 CH_2 CH_2 + CH_2 CH_2$
- 11. 下列实验方案的设计能达到相应实验目的的是


选项	实验目的	实验方案
A	验证淀粉在酸的催化下水解的产物是否具有还原性	取少许淀粉水解液于试管中,加入新制 $\mathrm{Cu(OH)}_2,\mathrm{m}$
В	检验 FeCl ₃ 溶液与 KI 溶液的反应是可逆反应	用两支试管分别取 FeCl ₃ 溶液、KI 溶液(过量), 充分反应后取出少许混合液于另一试管中,滴加 KSCN 溶液
С	鉴别乙烯和丙烯	将两种气体分别通入酸性高锰酸钾溶液中
D	制备金属钠	电解 NaCl 溶液

A. A B. B C. C D. D


- 12. 一定条件下进行反应: $2NO_2(g) f N_2O_4(g) \Delta H < 0$ 。下列说法正确的是
- A. 当混合气体的平均相对分子质量保持不变时, 反应达到平衡状态
- B. 恒温恒容条件下反应达到平衡时,通入 $N_2O_4(g)$,再次达到平衡时 $NO_2(g)$ 的质量分数增大
- C. 恒容条件下反应达到平衡时,升高温度,平衡正向移动
- D. 若改为恒温下用注射器作为容器,压缩注射器过程中可观察到气体颜色逐渐变浅
- 13. 下列根据图示所得出的结论错误的是

- B. 图乙表示恒温密闭容器中发生反应 $CaCO_3(s) f$ $CaO(s) + CO_2(g)$ 时, $c(CO_2)$ 随反应时间变化的曲线,则t's 时改变的条件可能是向容器中加入 CO_3
- C. 图丙表示密闭容器中发生反应 $CH_4(g) + H_2O(g) f$ $CO(g) + 3H_2(g)$ 时, CH_4 的平衡 转化率与压强、温度的变化关系曲线,则 $p_1 > p_2$
- D. 图丁表示在炭黑作用下 O_2 生成活化氧过程中的能量变化,则生成活化氧分子的过程为放热过程
- 14. 向 VL 恒容密闭容器中充入 $1 \text{molS}_2 \text{Cl}_2$ 和 1molCl_2 ,发生反应 $\text{S}_2 \text{Cl}_2(\text{g}) + \text{Cl}_2(\text{g}) f$ $2 \text{SCl}_2(\text{g}) \Delta H \text{ o Cl}_2 \text{ or SCl}_2 \text{ 的消耗速率}(\upsilon) 与温度(T) \text{的关系如图所示,下列说法正确的是}$

- A. 该反应正向为吸热反应
- B. 反应达到平衡后,降温有利于提高 SCI₂的平衡产率
- C. 相同条件下, 若初始投料改为 2molS₂Cl₂ 和 2molCl₂, 则平衡时 Cl₂ 的转化率变大
- D. 若在恒温恒容密闭容器中进行该反应,达到平衡后压缩容器的容积,重新建立新平衡,平衡常数 K 减小
- 二、非选择题:本题共4小题,共58分。
- 15. 含碳化合物的转化利用是我国研究的一个重要课题。在 1L 恒容密闭容器中充入 $2 molCO(g) 、 4 molH_2(g) , 发生反应 CO(g) + 2 H_2(g) \textit{f} CH_3OH(g) \Delta \textit{H} , 在 \textit{T}_1 、 \textit{T}_2 两$ 个不同温度下测得 c(甲醇)与时间 t 的关系如图。据此回答下列问题:

充入 CO、 ${
m H}_2$ 、 ${
m CH}_3{
m OH}$ 各 1mol,此时反应速率: $2v_{{}_{
m E}}{
m (CO)}$ ______(填">""="或 "<") $v_{{}_{
m E}}{
m (H}_2)$ 。

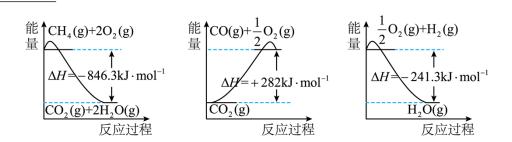
16. 化学反应过程中的热量变化在生活、生产和科学研究中具有广泛的应用。

(1) 已知几种燃料的燃烧热(ΔH)如表:

燃料	乙烯	己烷	氢气
	(g)	(C ₆ H ₁₄ ,l)	(g)
燃烧热 $(\Delta H)/\Big(ext{kJ}\cdot ext{mol}^{-1}\Big)$	-1411	-4163	-285.8

则己烷(l)裂解生成乙烯和氢气的热化学方程式为____。

(2) 用CO、 H_2 合成甲醇和甲醚的过程中主要发生的反应如下:


反应①:
$$CO(g) + 2H_2(g) f$$
 $CH_3OH(g)$ $\Delta H_1 = mkJ \cdot mol^{-1}$

反应②:
$$2\text{CO}(g) + 4\text{H}_2(g) = \text{CH}_3\text{OCH}_3(g) + \text{H}_2\text{O}(g)$$
 $\Delta H_2 = n\text{kJ} \cdot \text{mol}^{-1}$

反应③: 2CH₃OH(g)
$$f$$
 CH₃OCH₃(g)+H₂O(g) ΔH_3

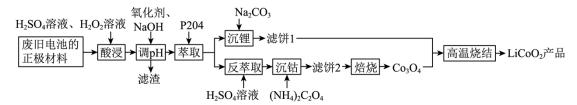
则
$$\Delta H_3$$
=____(用含 m, n 的代数式表示) $kJ \cdot mol^{-1}$ 。

(3) 以甲烷为原料可制得氢气: $CH_4(g) + H_2O(g) f$ $CO(g) + 3H_2(g)$ 。有关化学反应的能量变化如图所示,则 $CH_4(g)$ 与 $H_2O(g)$ 反应生成CO(g)和 $H_2(g)$ 的热化学方程式为

(4) 氮氧化物是造成光化学烟雾和臭氧层破坏的主要气体。

已知: ①
$$CO(g) + NO_2(g) = NO(g) + CO_2(g)$$
 $\Delta H = -akJ \cdot mol^{-1}(a > 0)$

②
$$2\text{CO}(g) + 2\text{NO}(g) = \text{N}_2(g) + 2\text{CO}_2(g)$$
 $\Delta H = -b\text{kJ} \cdot \text{mol}^{-1}(b > 0)$


用 33.6L(标准状况)CO 还原 NO_2 至 N_2 (CO 完全反应)的整个过程中转移电子的数目为

_____N_A,放出的热量为_____(用含有
$$a$$
和 b 的代数式表示) k J。

(5) 合成氨反应中一些化学键的键能如表所示:

化学键	键能 / (kJ·mol ⁻¹)	化学键	键能 / (kJ·mol ⁻¹)
N = N	946	Н-О	462.8
N-H	390.8	Н-Н	436

17. 废旧电池的回收利用,既可以减少环境污染,又可以节约资源。以某废旧电池的正极 材料(主要成分为 ${\rm LiCoO}_2$,还含有少量铁铝等元素的化合物)为原料制备 ${\rm LiCoO}_2$ 产品的 工艺流程如图所示。

高级中学名校试卷

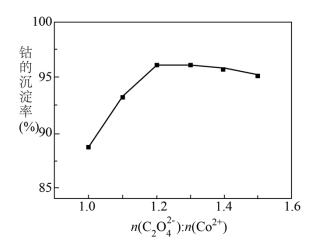
已知: ① CoC_2O_4 难溶于水,且能与过量的 $C_2O_4^{2-}$ 生成 $\left\lceil Co\left(C_2O_4\right)_2 \right\rceil^{2-}$ 。

②流程中部分金属阳离子形成氢氧化物沉淀时开始沉淀的 pH 和沉淀完全的 pH 如下表:

金属阳离子	Fe ³⁺	Fe ²⁺	Al ³⁺	Co ²⁺
开始沉淀 pH	2.7	7.6	4.0	7.6
沉淀完全 pH	3.7	9.6	5.2	9.2

回答下列问题:

	(1)	LiCoO, 中	Co 元素的化合价为	价	
--	-----	----------	------------	---	--

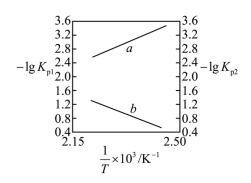

(2)"酸浸"过程中 ${ m LiCoO_2}$ 发生反应的化学方程式为	,试推
测在酸性条件下 H_2O_2 、 $LiCoO_2$ 、 Fe^{3+} 的氧化性由强到弱的顺序为。	

(3)"调 pH"时,若要使杂质离子全部沉淀,则调节 pH 的范围:

(4)"滤饼1"在"高温烧结"前需要洗涤、干燥、检验"滤饼1"洗涤干净的操作及现象是

 $(5) "沉钴"时,钻的沉淀率与 <math>\frac{n\left(C_2O_4^{2-}\right)}{n\left(Co^{2+}\right)}$ 的关系如图所示,随着溶液 $\frac{n\left(C_2O_4^{2-}\right)}{n\left(Co^{2+}\right)}$ 的继续增

大,而钴的沉淀率却减小的原因是_____。


- 18. 一氯化碘(ICI)是一种卤素互化物,具有强氧化性,能与 NO 发生反应,可用作有机合成中的碘化剂。
- (1)已知:由多步基元反应组成的总反应称为复杂反应,其反应速率取决于慢反应的反应速率。总反应 $2NO(g)+O_2(g)$ f $2NO_2(g)$ 的快、慢反应及相关信息如表 $(k_{1 \pm}, k_{1 \pm})$ 和 $k_{2 \pm}$ 为反应速率常数,仅受温度影响):

快反应	$2NO(g) f N_2O_2(g)$	$v_{\mathbb{E}} = k_{1\mathbb{E}} \cdot c^2(\text{NO}), v_{\mathbb{E}} = k_{1\mathbb{E}} \cdot c(\text{N}_2\text{O}_2)$
慢反应	$N_2O_2(g) + O_2(g) f$ $2NO_2(g)$	$v_{\mathbb{E}} = k_{2\mathbb{E}} \cdot c(N_2 O_2) \cdot c(O_2)$

(2) 已知反应 1: 2NO(g)+2ICl(g) f $2NOCl(g)+I_2(g)$ $\Delta H_1<0$ $K_{\rm pl}$ 反应 2: 2NOCl(g) f $2NO(g)+Cl_2(g)$ $\Delta H_2>0$ $K_{\rm p2}$

通过实验测定和计算,确定了反应 1 和反应 2 在 $136\sim180$ [°]C 范围内的压强平衡常数 K_p (用 各气体物质的平衡分压替代物质的量浓度计算的平衡常数)。得到的 $-\lg K_{pl}\sim\frac{1}{T}$ 和

$$-\lg K_{p2} \sim \frac{1}{T}$$
均为线性关系,如图所示:

反应 2ICl(g) f $Cl_2(g) + I_2(g)$ $\Delta H = ____(用 \Delta H_1 和 \Delta H_2 表示)$; 图中

温""低温"或"任意温度")下能自发进行。

(3) 温度为 T℃时,向某恒容密闭容器中加入过量 BaPtCl₆(s),并通入碘蒸气(初始压强为 20kPa),发生下列反应:

反应 3: BaPtCl₆(s) f BaCl₂(s)+Pt(s)+2Cl₂(g) $K_{p3}(T^{\circ}C)=1\times10^{4}$ Pa²

反应 4: $\operatorname{Cl}_2(g) + \operatorname{I}_2(g) f$ 2ICl(g) K_{p4}

当反应进行 tmin 后达到平衡,此时容器内气体总压强为 32.5kPa,则平衡时 $p\left(\mathrm{Cl}_2\right)$ =

_____kPa,0~t min 内, $v(I_2)$ =_____kPa·min $^{-1}$, K_{p4} =_____(列出计算式即可)。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/816044123104011001