
2023-2024 学年高二上册数学期末试卷 1 (人教版)

单项选择题 : (本大题共 8 小题 , 每小题 5 分 , 共计 40 分)

r ,向量*b*□ □1,2,,若 a□ b,则实数 <u>t</u>(1. 向

C. □2

2. 如图, 在四面体 *OAB* 中, *M*, *N*分别是 *O* MN

- X轴为对称轴,抛物线通径的长为 8,顶点在坐标原点的抛物线的方程是 (
- A. $y^2 \square 8x$

B. $y^2 \square x$

C. *y* ² 日8 *x*或 *y* ² 日 *x*

- D. $x^2 \square 8 y$ 或 $x^2 = 8 y$
- $x^2 \Box y^2 \Box 4x \Box 1y \Box 0$ 关于直线 $ax \Box b \Box 6 \Box 0 (a \Box 0, b \Box 0)$ 对称,则 $\frac{2}{a} \Box \frac{6}{b}$ 的最小值是(
- A. $2\sqrt{3}$

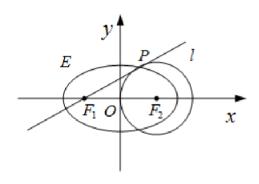
- 5. 某研究所计划建设 n个实验室,从第 1 实验室到第 n实验室的建设费用依次构成等差数列,已知第 7 实验室比 第 2 实验室的建设费用多 15 万元,第 3 实验室和第 6 实验室的建设费用共为 61 万元.现在总共有建设费用 438
- 元,则该研究所最多可以建设的实验室个数是()
- A. 10

B. 11

C. 12

- D. 13
- 6. 已知等比数 { a } 的各项均为正数 , 列
- A. **3**

B. 5

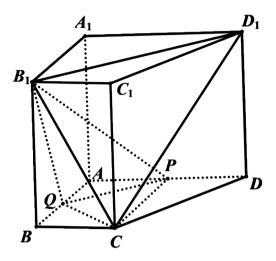

- _{C.} log 15
- D. 30
- 7. 从直 $f:3x \square 4y \square 1$ 上的动点 $f:3x \square 4y \square 1$ 上的动点

形 <i>OCP</i> (<i>C</i> 为坐标原点) 面积是 ()						
A. √3	B. $2\sqrt{2}$	C. $2\sqrt{3}$	D. 2			
8. 已知双曲线 $\frac{X^2}{4} \frac{y^2}{10^{-2}}$ [コ 1(日 0) 的左右焦点分别为 <i>b</i>	o f 、 F ₂ ,过点 F ₂ 的直线;	交双曲线右支于 A、B 两点,若			
VABF是等腰三角形,	且□ <i>A</i> □120,则V <i>AB</i> E的)周长为()				
A. $\frac{16\sqrt{3}}{3}\square 8$	в. 4 🔽 🗆 1 🗆	C. $\frac{4\sqrt{3}}{3}$ $\Box 8$	D. 2∏⁄3□2□			
二、多选题:(本题共	4 个小题,每小题 5 分	, 共 20 分,有多项符合	3题目要求,全部选对的得 5			
分,部分选对得2分	,有选错的得 0 分.)	_				
9. 已知 <i>M</i> , <i>A</i> , <i>B</i> , <i>C</i> [四点互不重合且任意三点不	口 共线,则下列式子中能	000 0000 0000 成为空间的一个基底的			
是()						
A. DDD 1 DD 1 DD 1 DD 1 DD 1 DD 1 DD 1 D		B. 00 0 00 02 MC MA MB 00 00 00 000 D. 00 0 002 000 MA 3				
10. <i>Q x</i> ² ll <i>y</i> ² ll 2 <i>x</i> 圆	'□0和圆 <i>Q x²□y²□2x</i> □ ·	」4 <i>y</i> □0的交点为 <i>A,B</i> ,	则有 ()			
A. 公共 <i>AB</i> 所在直线 弦	方程为 χ□ y□ 0	B. 线段 <i>AB</i> 中垂线方程	为 x ロ ロ ロO v			
C. 公共弦 AB 的长为 $\frac{\sqrt{2}}{2}$	$rac{\overline{2}}{2}$ D. P 为圆 Q 上 \cdot	一动点,则 <i>P</i> 到直 <i>AB</i> 距 线	I离的最大值为			
11. 已知数列{ <i>an</i> }的 <i>n</i>] 为	顷和 <i>S。□ n</i> ²□ 33 ,则下	列说法正确的是()				
A. a 🗆 🗆 🗆 34		B. S16为 Sn的最小值				
C. $ a_1 \square a_2 \square \square \square a_6 $		D. 使得 <i>S</i> 0 成立的 <i>n</i>				
12. 已知椭 $C: \frac{x^2}{a^2} \stackrel{\mathcal{Y}}{\Box}$	。 ₂ 01[a0b00[的左、右焦	集点分别为 <i>₹ 、 №</i> 且 <i>F F</i>	□ 2 , 点 <i>P</i> □1, 在椭圆内部 , 点 1□			
Q 在椭圆上,则以下说	法正确的是()					
A. QF	直为 2 <i>a</i> 1					
B. 椭圆 <i>C</i> 的短轴长可能	为 2					

2 / 24

三、填空题:(本大题共4个小题,每小题5分,共20分)

- 16. 如图,椭 E的左右焦点为 F , F ,以 F 为圆心的圆过原点,且与椭圆 E在第一象限交于点 P ,若过 P 、 F 的直线 与圆 F相切,则直线 的斜率 F ,椭圆 F 的离心率 F _____.



Ш	韶 を師・	(太野共ら小野	新 ± 7∩	分.解答应写出文字说明	证明过程武洁管先座)
蹈.	、胖子迷。	し中越大りりゅ	巡,天 ()	刀.胜合心与山人于坑明	、吡明以性以供异少球:)

- 17. 直线 经过两直 / x □ □2□0和 /2:x□□2□0 的交点. 线 · 2 · V
- (1) 若直线 与直 3x \square \square 0 平行, 求直线 的方程; 线 ν \square
- (2) 若点 A(3,1) 到直线 的距离 5 , 求直线 的方程 . 为

- 18. 已知等差数 \square 满足: a , a \square a \square a \square a \square a 的前 a \square 的前 a \square 的前 a \square \square \square \square
- (1) a及S_n;
- $\binom{2}{n}$ $\stackrel{\square}{\cap}$ $\binom{n}{n}$ $\stackrel{\square}{\cap}$ $\binom{n}{n}$ $\binom{n$

19. 如图,在直四棱 $ABCD^{\square}$ $ABDD^{\square}$ $ABDD^{\square}$

(1) 求二面 *C*口 *B C*口 *D* 的余弦值;

(2)若点 P为棱 AD的中点,点 Q在棱 AB上,且直线 B_1^C 与平面 B_1^PQ 所成角的正弦值为 $\frac{4\sqrt{5}}{15}$,求 AQ的长.

- 20. 已知椭 $C: \frac{x^2}{a^2} \stackrel{\mathcal{Y}^2}{\Box} \stackrel{\square}{=} \stackrel{\square}{=} a \stackrel{\square}{\Box} b \stackrel{\square}{\ominus} 0$ 过点 $\stackrel{\square}{\Box} \stackrel{\sqrt{2}}{=} \frac{\sqrt{3}}{2} \stackrel{\square}{=} ,$ 且离心率 $e \stackrel{\square}{\Box} \stackrel{\sqrt{2}}{=} .$
- (I)求椭 C 的标准方程;
- 回题 C 的左、右焦点分别为 F , F ,过点 F 作直线 与椭圆 C 交于 A , B 两点, C 为 C 的面积 .

- 21. 已知数 \square 满足 a , a_n \square $2 \square \frac{1}{a_n} [n \square N^*[]$. 列 \square a \square a
- (2) $C = \frac{2a}{n \square 1}$, 数列 $\square C = C = 2$ 的前 n 项和为 T ,是否存在正整数 m ,使 $T = \frac{1}{C + C}$ 对任意的 $n \square N *$ 都成 设

立?若存在,求出m的最小值;若不存在,试说明理由.

答案解析

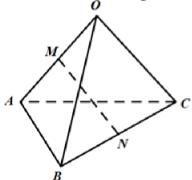
D. $\Box \frac{8}{5}$

一、单项选择题 :(本大题共 8 小题 , 每小题 5 分 , 共计 40 分)

【1题答案】

【答案】C

【解析】


【分析】由空间向量垂直的坐标表示列方程即可求解.

□ r □ □ r □ □ □ □ □ (详解】因为向量 a □ , 向量 b □ □1, 2, , 若 a □ b ,

则 □ □ 2 □ □ □ 5 □ 0 ,解得: t□ ,

故选:C.

2. 如图,在四面 *OAB* 中, *M*, *N*分别是 *O*, *BC*的中点,则 □ () 体 *C A MN*

A.
$$\frac{1}{2} \stackrel{\text{ID}}{\bigcirc} \frac{1}{2} \stackrel{\text{ID}}{\bigcirc} \frac$$

B.
$$\frac{1}{2} \stackrel{\square}{\square} \stackrel{\square}{\square} \frac{1}{2} \stackrel{\square}{\square} \stackrel{\square}{\square} \frac{1}{2} \stackrel{\square}{OB}$$
D. $\frac{1}{2} \stackrel{\square}{\square} \stackrel{\square}{\square} \frac{1}{2} \stackrel{\square}{\square} \stackrel{\square}{\square} \frac{1}{2} \stackrel{\square}{OB}$

【2题答案】

【答案】A

【解析】

【分析】利用向量的加法法则直接求解.

【详解】 \square 在四面体 OAB中,M,N分别是 OA,BC的中点,

故选:A. 3. 以X轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是(B. $y^2 \square x$ A. $v^2 \square 8x$ C. y² 🗆 8 x 或 y² 👢 x D. $x^2 \square 8 y$ 或 $x^2 = 8 y$ 【3题答案】 【答案】C 【解析】 【分析】由分焦点在x轴的正半轴上和焦点在x轴的负半轴上,两种情况讨论设出方程,根据 2p 8 ,即可求解 【详解】由题意,抛物线的顶点在原点,以X轴为对称轴,且通经长为8, 可得2 ρ 0 ,解得 ρ 0 ,所以抛物线方程为 y^2 08 x ; 当抛物线的焦点在x轴的负半轴上时,设抛物线的方程为 y^2 \square \square px \square D , 可得 $2 p \square$,解得 $p \square$,所以抛物线方程为 $y^2 \square x$, 所以所求抛物线的方程为 $y^2 \mid D \mid x$. 故选: C. 4. 圆 $x^2 \square y^2 \square 4x \square 1y \square 0$ 关于直线 $ax \square b \square 6 \square 0 (a \square 0, b \square 0)$ 对称,则 $\frac{2}{a} \square \frac{6}{b}$ 的最小值是(

A. $2\sqrt{3}$

【4题答案】

【答案】C

【解析】

【分析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得 a 🛘 🗀 3,然后由 $\frac{2}{a}$ $\frac{6}{b}$ $\frac{2}{3}$ $\frac{2}{a}$ $\frac{3}{b}$ $\frac{1}{a}$ $\frac{3}{b}$ $\frac{1}{b}$, 展开利用均值不等式可得答案.

【详解】由圆 x^2 0 y^2 0 1 y 0 0 可得标准方程为 0 1 y							
因为圆 x² □ y² □ 4 x □ 1 y □ □0关于直线 ax □ by □6 □ 0 a □0, b □0) 对称 ,							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
当且仅当 $\frac{3}{a}$ $\frac{3}{a}$ $\frac{a}{b}$, 即 $a=b=\frac{3}{4}$ 时取等号,							
故选:C.							
5. 某研究所计划建设 n 个实验室,从第 1 实验室到第 n 实验室的建设费用依次构成等差数列,已知第 7 实验室							
比第 2 实验室的建设费用多 15 万元,第 3 实验室和第 6 实验室的建设费用共为 61 万元.现在总共有建设费用							
438万							
元,则该研究所最多可以建设的实验室个数是()							
A. 10 B. 11 C. 12 D. 13							
【5 题答案】							
【答案】C							
【解析】							
【分析】根据等差数列通项公式,列出方程组 [a_1 \Box a_2 \Box a_3 \Box a_4 \Box a_5 \Box a_6 \Box							
令 ^S "□ 43 , 即可求解. 8							
【详解】设第 n 实验室的建设费用 a 万元,其中 n 1,2,1,0,则 5 为等差数列,设公差为 d,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,							
则由题意可得 $\begin{bmatrix} a_1 & a_2 & 0 & 5 & 0.15 & & & & & & & & & & & & & & & & & & &$							
令 <i>S</i> □ 43 ,即3 ₂□ 3 <i>n</i> □ 87 □0 ,解得□ ⁷³ □ <i>n</i> □ 1 ,又 <i>n</i> □ N ,所以1 □ □12 , <i>n</i> □ N* , 8 7 6 2 * <i>n</i>							
所以最多可以建设 12 个实验室.							
故选:C.							
6. 已知等比数 { a }的各项均为正数,且 a a □ a a □ a a □ 6 ,则 lo 3 a □ lo 3 a □ □ □ lo 3 a □ □ (
A. 3 B. 5 C. log 15 D. 30							

9 / 24

【6 题答案】

【答案】B

【解析】

【分析】利用对数的运算性质,结合等比数列的性质可求得结果.

 $\square \ a_{5} a_{6} \square \ a_{4} a_{7} \square \ 6 \ , \ \square \ a_{5} a_{6} \square \ a_{4} a_{7} \square \ 3 \ , \ \square \ \log_{3} a_{1} \square \ \log_{3} a_{2} \square \ \square \square \ \square \ \log_{3} a_{10} \square \ \log_{3}$

故选:B

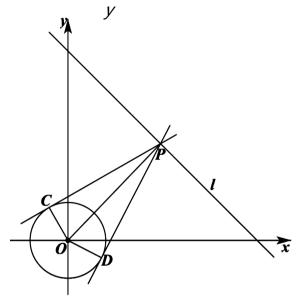
7. 从直线 I:3 I:3 I:4 I:

A. $\sqrt{3}$

B. $2\sqrt{2}$

C. $2\sqrt{3}$

D. 2


【7题答案】

【答案】B

【解析】

【分析】分析可知当 $OP \square$ /时, $\square CPD$ 最大,计算出 $|O| \times |PC|$,进而可计算得出四边形 $|OCP| \in O$ 为坐标原点)面积.

【详解】圆 x^2 \square 2 \square 1的圆心为坐标原点 O , 连接 OC 、 OD 、 OP , 则 \square OPC \square \square OPD ,

设 \Box OPC \Box OPD \Box , \Box CPD \Box $2\Box$ OC \Box PC , 则 $\sin\Box$ $\frac{|OC|}{|OP|}$ \Box $\frac{1}{|OP|}$,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/825321233223011323