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Supervised deep learning methods have shown promis-

ing results for the task of monocular depth estimation; but

acquiring ground truth is costly, and prone to noise as well

as inaccuracies. While synthetic datasets have been used

to circumvent above problems, the resultant models do not

generalize well to natural scenes due to the inherent domain

shift. Recent adversarial approaches for domain adap-

tion have performed well in mitigating the differences be-

tween the source and target domains. But these methods are

mostly limited to a classification setup and do not scale well

for fully-convolutional architectures. In this work, we pro-

pose AdaDepth - an unsupervised domain adaptation strat-

egy for the pixel-wise regression task of monocular depth

estimation. The proposed approach is devoid of above lim-

itations through a) adversarial learning and b) explicit im-

position of content consistency on the adapted target rep-

resentation. Our unsupervised approach performs compet-

itively with other established approaches on depth estima-

tion tasks and achieves state-of-the-art results in a semi-

supervised setting.

1. Introduction

Deep neural networks have brought a sudden sense of

optimism for solving challenging computer vision tasks, es-

pecially in a data-hungry supervised setup. However, the

generalizability of such models relies heavily on the avail-

ability of accurate annotations for massive amount of di-

verse training samples. To disentangle this dependency, re-

searchers have started focusing towards the effectiveness of

easily obtainable synthetic datasets in training deep neural

models. For problem domains like semantic scene under-

standing, which face difficulty due to insufficient ground-

truth for supervision, use of graphically rendered images

has been a primary alternative. Even though synthetic im-

ages look visually appealing, deep models trained on them
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Figure 1. Illustration of the proposed domain adaptation method

with input image domain discrepancy (red and blue background)

followed by depth-map prediction. Color coded arrows represent

corresponding RGB image and depth predictions for the synthetic-

trained encoder (red and pink bordered) and for the adapted en-

coder (blue bordered); indicating that synthetic-trained model

shows sub-optimal performance on natural images.

often perform sub-optimally when tested on real scenes,

showing lack of generalization [19, 35]. From a probabilis-

tic perspective, considering input samples for a network be-

ing drawn from a certain source distribution, the network

can perform sufficiently well on test set only if the test data

is also sampled from the same distribution. Hence, the gen-

eral approach has been to transfer learned representations

from synthetic to real datasets by fine-tuning the model on

a mixed set of samples [42].

For depth estimation tasks, the ground-truth acquired us-

ing devices like Kinect or other depth sensor hibits noisy

artifacts [40] and hence severely limits the performance of

a supervised depth prediction network. In the widely used

NYU Depth Dataset [34], such cases are addressed by man-

ually inpainting the depth values in the distorted regions.

But the dataset has only a handful of such crafted samples,

mainly because the process is laborious and prone to pixel-

level annotation errors. These shortcomings show the need

for a framework that is minimally dependent on scarce clean
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ground truth data. AdaDepth addresses this need by adapt-

ing representations learned from graphically rendered syn-

thetic image and depth pairs to real natural scenes.

Monocular depth estimation is an ill-posed problem; yet

it has many applications in graphics [21], computational

photography [2] and robotics [26, 41]. To overcome the

lack of multi-view information, depth prediction models

need to exploit global semantic information to regress ac-

curate pixel-level depth. It is observed that an end-to-end

Fully Convolutional Network (FCN) [25] can extract use-

ful objectness features for efficient depth prediction with-

scenes also adhere to the natural distribution of relative ob-

ject placement.

Previous works on domain adaptation techniques either

attempt to learn an extra mapping layer to reduce domain

representation gap [33] or learn domain invariant represen-

tations by simultaneously adapting for both source and tar-

get domains [44]. In contrast to classification-based ap-

proaches, there are very few works focusing on spatially

structured prediction tasks [17]. Zhang et al. [50] show

the inefficiency of classification-based approaches on such

tasks, mostly because of the higher dimensional feature

space. To the best of our knowledge, we are the first to

explore unsupervised adversarial domain adaptation for a

spatially structured regression task of depth estimation. In

general, Mode collapse [37] is a common phenomenon ob-

served during adversarial training in absence of paired su-

pervision. Because of the complex embedded representa-

tion of FCN, preservation of spatial input structure in an

unsupervised adaptation process becomes challenging dur-

ing adversarial learning. Considering no access to target

depth-maps, we address this challenge using the proposed

content congruent regularization methods that preserve the

input structural content during adaptation. The proposed

adaptation paradigm results in improved depth-map estima-

tion when tested on the target natural scenes.

Our contributions in this paper are as follows:

• We propose an unsupervised adversarial adaptation

setup AdaDepth, that works on the high-dimensional

structured encoder representation in contrast to adap-

tation at task-specific output layer.

• We address the problem of mode collapse by enforc-

ing content consistency on the adapted representa-

tion using a novel feature reconstruction regularization

framework.

• We demonstrate AdaDepth’s effectiveness on the task

of monocular depth estimation by empirically evaluat-

ing on NYU Depth and KITTI datasets. With minimal

supervision, we also show state-of-the-art performance

on depth estimation for natural target scenes.

2. Related work

Supervised Monocular Depth Estimation There is a

cluster of previous works on the use of hand-crafted fea-

tures and probabilistic models to address the problem of

depth estimation from single image. Liu et al. [28] use pre-

dicted labels from semantic segmentation to explicitly use

the objectness cues for the depth estimation task. Ladicky

et al. [24] instead carry out a joint prediction of pixel-level

semantic class and depth. Recent spurt in deep learning

based methods has motivated researchers to use rich CNN

features for this task. Eigen et al. [6] were the first to use

CNNs for depth regression by integrating coarse and fine

scale features using a two-scale architecture. They also

combined the prediction of surface normals and semantic

labels with a deeper VGG inspired architecture with three-

scale refinement [5]. To further improve the prediction

quality, hierarchical graphical models like CRF have been

combined with the CNN based super-pixel depth estima-

tion [27]. For continuous depth prediction, Liu et al. [29]

use deep convolutional neural fields to learn -to-end

unary and pairwise potentials of CRF to facilitate the train-

ing process. Laina et al. [25] proposed a ResNet [16] based

encoder-decoder architecture with improved depth predic-

tion results.

Unsupervised/Semi-supervised Depth Estimation An-

other line of related work on depth estimation focuses on

unsupervised/semi-supervised approaches using geometry-

based cues. Garg et al. [10] proposed an encoder-decoder

architecture to predict depth maps from stereo pair images

using an image alignment los tending this, Godard et

al. [13] proposed to minimize the left-right consistency of

estimated disparities in stereo image pair for the unsuper-

vised depth prediction task. On the other hand, Yevhen

et al. [23] follow a semi-supervised approach using sparse

ground-truth depth-map along with the image alignment

loss in a stereo matching setup. Zhou et al. [52] used

sequences for depth prediction with view synthesis as a su-

pervisory signal.

Transfer learning using Synthetic Scenes Lately, graph-

ically rendered datasets are being used for various com-

puter vision tasks such as pose prediction of human and

objects [42, 47], optical flow prediction [4] and semantic

segmentation [35]. Zhang et al. [51] proposed a large-

scale physically-based rendering dataset for indoor scenes

to bridge the gap between the real and synthetic scene with

improved lighting setup. But training deep CNN models on

such diverse synthetic images does not generalize directly

for natural RGB scenes.

Domain adaptation Csurka [3] published a comprehen-

sive survey on domain adaptation techniques for visual ap-

plications. Our work falls in the subarea of DeepDA (Deep

Domain Adaptation) architectures. Several such architec-
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tures incorporate a classification loss and a discrepancy

loss [12, 46, 31, 43], with um Mean Discrepancy

(MMD) [15] being the commonly used discrepancy loss.

Long et al. [31] use MMD for the layers embedded in a

kernel Hilbert space to effectively learn the higher order

statistics between the source and target distribution. Sun

and Saenko [43] proposed a deep correlation alignment al-

gorithm (CORAL) which matches the mean and covariance

of the two distributions at the final feature level to align their

second-order statistics for adaptation.

Another line of work uses adversarial loss in conjunc-

tion with classification loss, with an objective to diminish

domain confusion [44, 8, 9, 45]. As opposed to prior works

that usually use a fully-connected layer at for class

adaptation, we employ a DeepDA architecture for a more

challenging pixel-wise regression task of depth estimation.

Our proposed method uses the concept of Generative Ad-

versarial Networks (GANs) [14] to address the domain dis-

crepancy at an intermediate feature level. In GAN frame-

work, the objective of generator is to produce data which

can fool the discriminator, whereas the discriminator im-

proves itself by discriminating the generated samples from

the given target distribution. Following this, Isola et al. [18]

proposed pix2pix, that uses a conditional discriminator to

enforce consistency in generated image for a given

representation. Without such conditioning, the generator

can produce random samples that are inconsistent with the

given input representation, while minimizing the adversar-

ial loss. As an extension, Zhu et al. [53] introduced Cycle-

GAN, a cycle consistency framework to enforce consistency

of input representation at the generator output for unpaired

image-to-image translation task.

3. Approach

Consider synthetic images xs ∈ Xs and the correspond-

ing depth maps ys ∈ Ys as samples from a source distri-

bution, ps(x, y). Similarly, the real images xt ∈ Xt are

considered to be drawn from a target distribution pt(x, y),
where ps 6= pt. Under the assumption of unsupervised

adaptation, we do not have access to the real depth samples

yt ∈ Yt.

Considering a deep CNN model as a transfer function

from an input image to the corresponding depth, the base

model can be divided into two transformations: Ms, that

transforms an image to latent representation, and Ts, that

transforms latent representation to the final depth predic-

tion. The base CNN model is first trained with full super-

vision from the available synthetic image-depth pairs i.e.

ȳs = Ts(Ms(xs)). A separate depth prediction model for

the real images drawn from target distribution can be written

as ȳt = Tt(Mt(xt)). Due to domain shift, direct inference

on target samples xt through the network trained on Xs re-

sults in conflicting latent representation and predictions, i.e.

Ms(xt) 6= Mt(xt) and Ts(Ms(xt)) 6= Tt(Mt(xt)). For

effective domain adaptation, ideally both Ms and Ts have

to be adapted to get better performance for the target sam-

ples. Considering that Xs and Xt only exhibit perceptual

differences caused by the graphical rendering process, both

domains have many similarities in terms of objectness infor-

mation and relative object placement. Therefore, we only

adapt Mt for the target distribution pt(x). To generalize the

learned features for the new domain, we plan to match the

latent distributions of Ms(Xs) and Mt(Xt) so that the sub-

sequent transformation Ts can be used t of the

domain as Ts = Tt = T .

We start the adaptation process by initializing Mt and

Tt with the supervisely trained weights from Ms and Ts

respectively. To adapt the parameters of Mt for the tar-

get samples xt, we introduce two different discriminators

DF and DY . The objective of DF is to discriminate be-

tween the source and target latent representations Ms(xs)
and Mt(xt), whereas the objective of DY is to discrimi-

nat ween Ys and T (Mt(Xt)). Assuming similar depth

map distribution for both synthetic and real scenes (p(Ys =
ys) ≈ p(Yt = yt)), inferences through the corresponding

transformation functions T (Ms(xs)) and T (Mt(xt)) are

directed towards the same output density function.

We use a ResNet-50 [16] based encoder-decoder archi-

tecture [25] for demonstrating our approach. Existing lit-

erature [49] reveals that in hierarchical deep networks, the

lower layers learn generic features related to the given data

distribution whereas the consequent layers learn more task

specific features. This implies that the transferability of

learned features for different data distributions (source and

target) decreases as we move from lower to higher lay-

ers with an increase in domain discrimination capability.

We experimentally evaluated this by varying the number of

shared layers between Ms and Mt, starting from the initial

layers to the final layers. From Figure 3, it is clear that to-

wards higher layers of Ms, features are more discriminable

for synthetic versus natural input distribution. Therefore,

we deduce that adaptation using only Res-5 blocks of Mt

(Res-5a, Res-5b and Res-5c) and fixed shared parameters of

other layers (Figure 2) is optimal for adversarial adaptation

as it requires minimal number of parameters to update.

In rest of this section, we describe the adversarial objec-

tives along with the proposed content consistent loss formu-

lations to update the parameters of Mt for depth estimation.

3.1. Adversarial Objectives

We define an adversarial objective LadvD at the predic-

tion level for DY and an adversarial objective LadvF at the

latent space feature level for DF . They can be defined as:

LadvD = Eys∼Ys
[logDY (ys)]

+ Ext∼Xt
[log (1− (DY (T (Mt(xt)))))] (1)
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Figure 2. AdaDepth: Our deep residual encoder-decoder base architecture with adversarial setup illustrating different transformation func-

tions as described in Section 3. The source (synthetic) and target (real) branch are specified by blue and purple channel respectively. The

double-headed arrows between res-blocks indicate parameter sharing. Note that during adaptation of the synthetic-trained T (Mt(xt)),
only the layers in purple branch are updated (i.e. Res-5 block) until the location of lock icon.

Trainable layers of Mt

rm
s

Figure 3. Effect of various weight sharing strategies on adversarial

adaptation process with domain consistency regularization (Sec-

tion 3.2.1).

LadvF = Exs∼Xs
[logDF (Ms(xs))]

+ Ext∼Xt
[log (1− (DF (Mt(xt))))] (2)

Mt parameters are updated to minimize both the adver-

sarial losses, whereas the discriminators DY and DF are

updated to ize the respective objective functions.

The final objective to update the parameters of Mt, DY

and DF can be expressed as minMt
maxDY

LadvD and

minMt
maxDF

LadvF .

3.2. Content Congruency

In practice, a deep CNN exhibits complex output and la-

tent feature distribution with multiple modes. Relying only

on adversarial objective for parameter update leads to mode

collapse. Theoretically, adversarial objective should work

for a stochastic transfer function. However, since we do

not use any randomness in our depth prediction model, it

is highly susceptible to this problem. At times, the output

prediction becomes inconsistent with the corresponding in-

put image even at optimum adversarial objective. To tackle

this, we enforce content congruent regularization methods

as discussed below.

3.2.1 Domain Consistency Regularization (DCR)

Since we start the adversarial learning after training on syn-

thetic images, the resultant adaptation via adversarial objec-

tive should not distort the rich learned representations from

the source domain. It is then reasonable to assume that Ms

and Mt differ by a small perturbation. We do so by enforc-

ing a constraint on the learned representation while adapting

the parameters for the new target domain. As per the pro-

posed constraint, the latent representation for the samples

from the target domain Mt(xt) must be regularized during

the adaptation process with respect to Ms(xt) and can be

represented as:

Ldomain = Ext∼Xt
[‖Ms(xt)−Mt(xt)‖1] (3)

3.2.2 Residual Transfer Framework (RTF)

Considering the adaptation process from Ms to Mt as a

feature perturbation, Long et al. [32] proposed a residual

transfer network to model Mt as Ms + ∆M . On simi-

lar lines, we implement an additional skip multi-layer CNN

block with additive feature fusion to model ∆M such that

Mt = Ms +∆M (Figure 4a). To maintain content consis-

tency, ∆M is constrained to be of low value so as to avoid

distortion of the base Ms activations. Also note that in this
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