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The intersection of machine learning methods and gas tur-
bine sensor data has expanded rapidly in the last decade to in-
clude numerous applications of regression, clustering, and even
neural network algorithms. Learning algorithms have pushed tra-
ditional engine health management into the realm of prognostic
health management. This paper starts with a review of several
common computational methods used to monitor the condition of
gas turbines currently employed by both industry and academia.
Sources of application of machine learning algorithms from out-
side the gas turbine industry are also brought in. Focus is gen-
erally placed on industrial gas turbines with an industry standard
monitoring system. The authors explore beyond gas path anal-
ysis with a novel use of machine learning algorithms to engine
component classification. The paper concludes with a case study
of applying learning algorithms to machine data to identify dif-
ferent fuel valves.

INTRODUCTION

Engine diagnostic monitoring and health management for
gas turbines has been implemented, starting in the mid-1970s,
in various forms. Algorithms and implementation have evolved
significantly as both engines and computational capabilities have
become more efficient, complex and powerful. Much of the early
development of such methods was born out of the aerospace in-
dustry’s engine’s safety requirements [1]; however, recent years
have seen significant contributions from industrial applications.
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Recent advances in technology have enabled a proliferation of
smaller, cheaper and more accurate sensors that are capable of
generating a wealth of data for the analysis of the engine con-
dition and overall health. This increase in engine data has lent
itself to analysis by algorithms ever-increasing in sophistication.

The definition of “Equipment Health Management” (EHM)
has many subtle variations one can find when surveying the field
of definitions; however, these can usually be distilled into three
primary components: monitoring, diagnostics and recommenda-
tions [1]. The first component, monitoring, is the act of peri-
odically observing the machine state while keeping a record of
the observations. Monitoring can be done at the machine or re-
motely, depending on the ma:hine settup. The current industry
standard is to have the capability of remote monitoring, in which
sensor values are captured at a given sampling frequency and
then bundled, sent to a remote source and stored [2]. Typically,
monitoring is done with intent to determine if the currently ob-
served machine state is at a nominal state or close to nominal
state. This introduces the second component of engine health
management, diagnostics. Diagnostics, according to Merriam-
Webster [3], can be defined generally as “investigation or anal-
ysis of the cause or nature of a condition, situation or problem.”
Thus, by definition, diagnostics can only take place after a prolb-
lem or condition has been observed. Observation of a state that
departs from the specified nominal state requires the observer to
determine or classify what “departure” actually entails. Further,
the granularity of detail in the investigation of the cause of the
observed departure depends at least in part, on the sophistica-
tion of the monitoring system, as well as the experience of the

Copyright © 2017 Solar Turbines Incorporated



engineer performing the investigation [4]. Naturally, the final
piece is the result/recommendation of (or based on) the diagno-
sis of the equipment’s departure from a nominal operating state.
This final piece is when value is added from the standpoint of
the equipment owner [5]. The equipment owner, armed with the
result and/or recommendation, is then able to make an educated
decision on what action to take next, as it relates to the afflicted
equipment, in order to satisfy business requirements.

With the above definition of EHM in place, it is easy to see
how various algorithms can be used to aid in this process. In last
year’s ASME Turbo Expo, a new, vogue term called the “digi-
tal twin” emerged in keynote addresses. This term refers to the
application of algorithms which simulates the processes of the
gas turbine system to a high degree of accuracy. In fact, there
are many applications of generalized modelling and simulation
of gas turbines [6] [7] [8]. Delving further into the analysis of
the gas turbine as it relates to EHM, one finds more direct ap-
plications of algorithms to specific sections of the gas turbine or
degradation detection. Indeed, neither degradation and anomaly
detection nor gas path analysis are new topics for algorithmic
based anslysis. [9] [10]. There are numerous mathematical tools
that can be employed with computers to aid in the analyzing of
the monitored machinery, many of which can be found in Lee,
Wu et all [11]. In much of the literature on EHM, application
of such algorithms are used directly to ascertain the state of the
machine [11] [12] [13] [14]. However, a critical step that is often
overlooked or under emphasized in application of these meth-
ods is understanding the source of the measurements and how
changes to this source can change the measurements and ulti-
mately, the conclusions drawn. For example, many authors state
that fuel flow is a critical parameter in gas path analysis [10] [7].
When looking at typical fuel flow time series data, it is easy to
fall prey to the idea that the measurement has a great deal of
noise in it. However, this idea can be misleading. As will be
seen later in this paper, different fuel valves have subtly different
flow characteristics, which can lead an engineer to make incor-
rect conclusions about degradation when looking at data from a
fleet of engines. Therefore, it is easy to see that a gas path anal-
ysis across a certain set of engines for EHM purposes could be
misleading without a proper understanding of which components
were installed on the machine.

While gas path analysis is a wonderful use of numerical al-
gorithms, this paper proposes a different application of machine
learning based algorithms. Specifically, this paper proposes us-
ing machine learning algorithms in the identification of specific
components of the gas turbine system. The utility of such an
application is evident in instances when an operator or owner is
trying to monitor the health of many of the same line of turbines
in his or her fleet, and needs to know which turbines have which
specific parts. A service provider of EHM falls into this cate-
gory. Note that EHM providers can be both Original Equipment
Manufacturers (OEM)s and non OEM’s. In the case of the OEM,

original engineering documents should be available in any anal-
ysis. However, it is possible that such information is incorrect
or that parts have been replaced without all documentation being
updated. Such a case arises when a customer has monitored the
health of their turbine on their own for the first part of the tur-
bine’s life and then for the second part elected to have the OEM
takeover monitoring responsibility. In these circumstances, not
all of the applicable maintenance records are readily available.
In the case of non OEM’s, the EHM provider may not even have
access to engineering documents. In either case, it can be diffi-
cult or impossible to ascertain specific component information.

This paper seeks to highlight the importance of understand-
ing the source of measurement data to be used in EHM algo-
rithms. First, the paper tours the space of mathematical algo-
rithms commonly used in industry for the monitoring of me-
chanical systems and in particular, rotating machines and gas
turbines. The remainder of this paper is a more in depth look
at three ‘classification type’, machine learning algorithms which
will be utilized in a case study that follows. The final portion of
the paper expands upon the case study and subsequent results. In
the case study, a subset of 25 gas turbines is selected, in which
each fuel valve installed on each machine is known. Machine
learning techniques are implemented in order to classify which
fuel valves are installed on which engines, and results are exam-
ined and analyzed. The paper concludes with ideas to extend the
accuracy of these methods as well as future research areas for
such applications of machine learning methods.

NOTATION

ML Machine Learning
FT Fourier Transform
WT Wavelet Transform
AR Autoregression

ARMA Autoregressive Moving Average
NN Neural Network

HMM  Hidden Markov Modeling

SVM Support Vector Machine

LR Logistic Regression
DT Decision Tree

KF Kalman Filter

IoT Internet of Things

OEM  Original Equipment Manufacturer
EHM  Equipment Health Monitoring

MACHINE LEARNING ALGORITHMS FOR EQUIPMENT
HEALTH MANAGEMENT

Statistical Learning refers to a vast set of tools for under-
standing data [15]. A direct definition of machine learning comes
from Murphy: “Machine Learning is a set of methods that can
automatically detect patterns in data, and then use the uncov-
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ered patterns to predict future data, or to perform other kinds of
decision making under uncertainty.” [16]. Broadly speaking, ML
methods fall within two broad categories: supervised or unsuper-
vised learning. Supervised learning refers to situations in which
there are data consisting of inputs and output(s). In this case,
information is obtained by relating the inputs to the correspond-
ing outputs, where the relation is generated by the particular ML
algorithm chosen. In the unsupervised case, the data only con-
tain inputs. The association between inputs and outputs cannot
be directly inferred, and instead, relations about the inputs are
created.

Machine Learning as defined above is not a novel idea; in
previous decades, the process of identifying relationships be-
tween inputs and outputs of a system has been called system
identification, artificial intelligence, and pattern classification
[17]. In the remainder of this section, some common algorithms
for machine monitoring applied to rotary machinery systems are
discussed. This section ends with a brief review of some stan-
dard classification algorithms that will be used in the presented
case study.

Lee, Wu, et al present a summary table of so called ‘“Prog-
nostic Health Management” tools that relate common learn-
ing/identification algorithms to typical rotating machinery com-
ponents. The following sets of machine components and their
common failures, algorithms for detection come primarily from
the exquisite work of Lee, Wu et al [11]. The addition of a valve
section seeks to keep the structure of Lee, Wu et al. The techni-
cal details of the algorithms listed in each of the following sub-
sections can be found in textbooks on machine learning and/or
frequency domain analysis [17] [18] [16] [19]:

Bearings: Typical issues and failures include the outer-race,
inner-race, roller or cage. Common measures include vibration
signals, oil contaminant inspection and, less commonly, acous-
tic signals. Common features seen in data are vibration char-
acteristic frequencies, metallic debris and sharp pulses of high
intensity. Common detection algorithms include Fourier Trans-
forms (FT), Wavelet Transforms (WT), Autoregression (AR)
Frequency Spectrum, Neural Networks (NN), Hidden Markov
Modeling (HMM), Support Vector Machines (SVM) and Princi-
ple Component Analysis (PCA).

Gears: Typical issues and failures include manufacturing
error, teeth missing or teeth erosion, and gear cracks. Common
measures include vibration signals and oil contaminant inspec-
tion. Common features seen in data are vibration characteristic
frequencies and metallic debris quantity. Common detection al-
gorithms include Fourier Transforms (FT), Wavelet Transforms
(WT), Autoregression (AR) Frequency Spectrum, Neural Net-
works (NN), Hidden Markov Modeling (HMM), Support Vector
Machines (SVM) and Kalman Filters (KF).

Shaft(s): Typical issues and failures include unbalance,
bends, cracks and misalignment resulting in rub. Common mea-
sures include vibration signals and harmonic frequency compo-

nents. Common features seen in data are vibration characteristic
frequencies and system modal characteristics. Common detec-
tion algorithms include Fourier Transforms (FT), Autoregressive
Moving Averages (AR)MA, Neural Networks (NN), and Support
Vector Machines (SVM).

Lastly, we introduce a mechanical element that does not ro-
tate, and so does not generate waveform data as the other ele-
ments do. This inclusion serves two purposes: (1) to show that
algorithms and machine learning can be applied to non-rotating
machinery data, and (2) to show that many of the same algo-
rithms are used regardless of the dynamics of the system.

Valves: Typical issues and failures include deadband, hys-
teresis and stiction (sticking due to friction) [9]. Common
measures include upstream/downstream pressures, temperatures,
command and position feedback signals. Common features seen
in data are response frequency shifts and time domain statistical
characteristics. Common detection algorithms include Neural
Networks (NN), Support Vector Machines (SVM), and various
Regression applications.

ALGORITHMS

As seen by the definitions stated at the beginning of this sec-
tion, ML algorithms are also supposed to make decisions as well
as recognize patterns. Loosely speaking, this describes classifi-
cation algorithms. These algorithms classify data sets (or rather,
partition data in parameter space and associate the various par-
titions with some type of identifier) and can be both supervised
or unsupervised algorithms. In the table below, a summary of
algorithms available in the MATLAB® classification learner is
presented. We discuss briefly the mechanics of the three chosen
algorithms which will be presented in the case study later in this
paper. The three algorithms were chosen on the following ba-
sis: they needed to be available in the Matlab machine learning
library and there needed to be both linear boundaries and non-
linear boundaries.

Algorithms In MATLAB® Classification GUI
Decision Trees (CART)
Discriminant Analysis
Logistic Regression
Support Vector Machines
Nearest Neighbor
Ensemble Methods

Decision Trees: Decision trees are a way of stratifying the pre-
dictor space into n non-overlapping, exhaustive regions , Ry,
such that U}_, Ry = R, where R is the entire predictor space.
Classification decision trees can be used to predict a qualitative
or discrete response. In implementation, after the tree algorithm
has been trained, an observation is assigned the value of the most
commonly occurring class of training observations in the region
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to which it belongs [15]. To “grow” or train a classification tree,
recursive binary splitting is used. To perform recursive binary
splitting, all predictors X{,...X,; and all possible division points
for each predictor are considered. Choice of the predictor and
division point are determined based on some form of minimized
error. The most popular choice of error function for classifica-
tion trees is the Gini Index, G = Z,V(V:l 2pwic(1 — pyx) where W
is the number of classes in the response and p,, is the propor-
tion of training observations in the wih region, from the kth class.
Here, 2p,«(1 — p,i) can be seen to be the variance of a bino-
mial random variable [20], so the Gini Index method seeks to
minimize total variance across the k classes. Another relatively
popular choice for minimizing error is the Cross-Entropy func-
tion; see [16].

Logistic Regression: Logistic regression gets its name from the
underlying function that generates the classifications, the logistic

ea0+111x1+---+11pxp

function, y = , where x; is the kth predictor and

0 <y < 1. To make a classification, a threshold value T is chosen,
where 0 < T < 1,such thatif 0 <y < T, § =0, otherwise y = 1.
By construction, this function is a binary classifier, although
there are ways to use it for more than two classes [15]. Since the
function is nonlinear, finding the coefficients ay,b; is typically
done by using a numerical minimization technique on the ob-

jective function, argmin f(y — §), with f = ||-||;, some specified
ak,b j

I-norm. Popular optimization algorithms include but are not lim-

ited to ‘Newton - conjugate gradient’, ‘Levenberg Marquardt’,

‘Iteratively reweighted least squares’ and the ‘BFGS’ methods.

These methods and more can be found in [21].

Support Vector Machines: The support vector machine algorithm
is a variant of the support vector classifier, which is the imple-
mentation of the soft margin classifier algorithm. Specifically,
the soft margin classifier satisfies an optimization on M:

max M
BU?BI)‘“aBpagll,EZs'“!S[)
p
subject to Z sz =1,
j=1

yi(ﬁo+ﬁ1xi1 —|—B2x,~2—|— +ﬁpx,-p) > M(l —{:‘i)7

€i207i8i§C

i=1

The support vector machine brings in kernel functions,
f(x) = Bo+ Yl 0uK(x,x;), where K(x,x;) represents the ker-
nel function. The constraints must be adjusted accordingly; for
example, y;(f(x)) > M(1 — &;). Popular kernels are the polyno-
mial kernel K (x;,x;) = (1+ Zlexijxﬂj)d and the radial kernel

K(xi,x}) = exp(=y¥X/_, (xij —x¢;)?). For a more technical re-
view of SVMs, see [18].

CASE STUDY: GAS VALVE CLASSIFICATION

In this section, we present a case study: the classification of
the type of fuel valve in use in an industrial gas turbine, based
only on standard signals measured on a gas turbine. A priori
knowledge is used that the population of data has only two pos-
sible valve types, and so an individual set of data points at time ¢,
is categorized as valve I or valve 2.

This case study and the motivation for this paper come from
real life lessons learned from attempting to jump from raw ma-
chine output data to engine condition monitoring [22]. In this
previous study, uncertainty in the fuel flow measurements was
attributed to insufficient knowledge about the engine systems un-
der investigation, specifically that there were different fuel valves
present in the same fleet. Recognizing that the crucial step of un-
derstanding how the data was generated had been overlooked, we
sought to classify the fuel valves present in the fleet in question.

The choice of the fuel valve classification to illustrate the
proposed machine learning algorithms is indeed a practical one.
From the perspective of the OEM, maintenance records are not
always available. Customers can and do replace hardware on
their own without leaving a sufficient paper trail. An example
being a customer who has monitored the health of their turbine
on their own for the first part of the machine’s life and then for
the second part elected to have the OEM monitor the machine.
In this case, it is often found that not all maintenance records are
available. Furthermore, even when knowledge of the valve part
is available, it is still useful to classify the operation of the valve
as healthy or unhealthy. Such a classification can be done us-
ing the same techniques as proposed in the two-valve case study.
These realizations provide the current problem statement. Can
specific components of a gas turbine be predicted using ma-
chine learning techniques?.

This case study attempts to provide an initial answer to this
question. A fleet of 25 similar turbines is analyzed, where it is
known that each turbine has one of two possible fuel valves in-
stalled. The fuel used in the sample fleet is known to be of similar
composition but time varying. Using measurements of the pres-
sures and temperatures of the gas, command of the fuel valve and
standard operating parameters like shaft speed, power and ambi-
ent conditions, three separate types of ML models are trained and
used to classify a given engine’s fuel valve as “valve 1” or “valve
2”. The first classification approach uses data from a high fidelity
engine simulation, in which site conditions and engine setpoints
were assumed. The second classification approach uses actual
field engine data from the fleet of engines. In both cases, the
three chosen ML algorithms are trained and then applied to the
fleet. Lastly, results and conclusions are discussed.
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