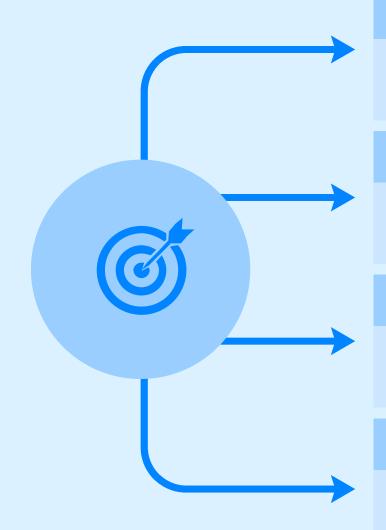
TC4表面激光熔 覆Ni60基涂层 温度场热循环特 性数值模拟研究

汇报人:

2024-01-17

CATALOGUE


- ・引言
- ·TC4表面激光熔覆Ni60基涂层制备
- ・温度场热循环特性数值模拟方法
- ・温度场热循环特性结果分析
- 数值模拟结果验证与讨论
- 结论与创新点总结

01

CATALOGUE

引言

研究背景和意义

激光熔覆技术

一种先进的表面改性技术,通过高能激光束将涂层材料瞬间熔化并快速凝固,形成与基体冶金结合的涂层。

TC4钛合金

广泛应用于航空、航天等领域,但表面硬度低、耐磨性差,需通过表面改性技术提高其性能。

Ni60基涂层

具有优异的耐磨、耐腐蚀和高温性能,是理想的激光熔覆材料。

研究意义

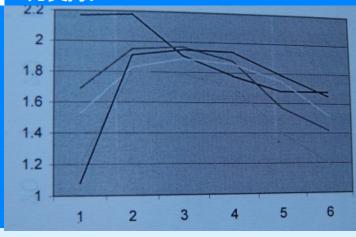
通过数值模拟研究TC4表面激光熔覆Ni60基涂层的温度场热循环特性, 为优化工艺参数、提高涂层质量和性能提供理论支持。

少。

国内外研究现状及发展趋势

国内研究现状

国内学者在激光熔覆温度场数值模拟 方面取得了一定成果,但针对TC4表 面激光熔覆Ni60基涂层的研究相对较



国外研究现状

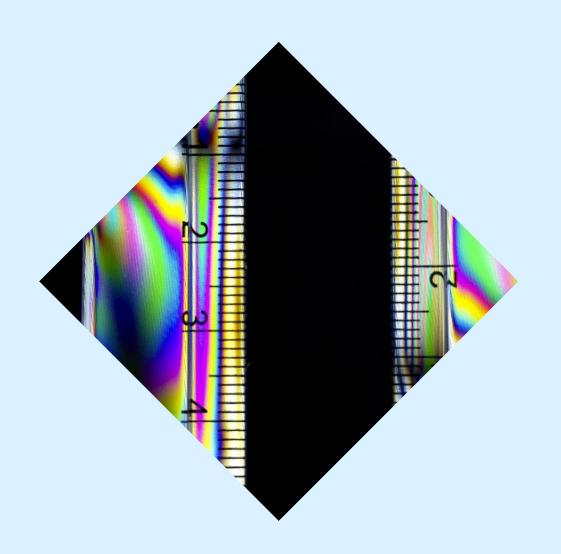
国外学者在激光熔覆温度场数值模拟 方面研究较为深入,涉及多种材料和 工艺参数,但针对TC4和Ni60组合的 研究也不多。

发展趋势

随着计算机技术和数值模拟方法的不断发展,激光熔覆温度场数值模拟将更加精确和高效,为实际生产提供有力支持。

研究内容和方法

研究内容


建立TC4表面激光熔覆Ni60基涂层的 三维温度场数学模型,分析不同工艺 参数(激光功率、扫描速度、光斑直 径等)对温度场分布和热循环特性的 影响。

研究方法

采用有限元法进行数值模拟,利用 ANSYS等软件进行建模和求解。通过 实验验证数值模拟结果的准确性和可 靠性。 O2 CATALOGUE

TC4表面激光熔覆Ni60基涂层制备

TC4钛合金基体

选择适当尺寸的TC4钛合金作为基体材料,进行表面预处理,如 打磨、清洗等,以消除表面缺陷和污染物。

Ni60粉末

选用高质量的Ni60粉末作为熔覆材料,粉末颗粒大小适中,具有良好的流动性和润湿性。

辅助材料

根据实验需求,准备相应的辅助材料,如粘结剂、稀释剂等。

激光器

选用高功率、高效率的激光器,如CO2激光器或光纤激光器,以提供足够的能量密度进行熔覆。


光路系统

包括激光束的传输、聚焦和扫描 等部分,确保激光束能够准确地 照射到TC4基体表面。

控制系统

用于控制激光器的输出功率、光 斑大小、扫描速度等参数,实现 熔覆过程的精确控制。

熔覆工艺参数

涂层质量表征

宏观形貌观察

采用肉眼或低倍放大镜观察 涂层的宏观形貌,如表面平 整度、裂纹、气孔等缺陷情 况。

显微组织分析

利用金相显微镜或扫描电子 显微镜观察涂层的显微组织, 分析晶粒大小、形态和分布 等特征。

硬度测试

采用硬度计测试涂层的硬度值,以评估其耐磨性和抗划伤性能。

结合强度测试

通过划痕法、拉伸法等方法 测试涂层与基体之间的结合 强度,以评价其结合牢固程 度。 O3 CATALOGUE

温度场热循环特性数值模拟方法

数值模拟软件介绍

ANSYS软件

采用ANSYS有限元分析软件,利用其强大的计算能力和丰富的材料数据库进行数值模拟。

MARC软件

利用MARC软件的高级非线性求解器,对激光熔覆过程中的高度非线性问题进行准确模拟。

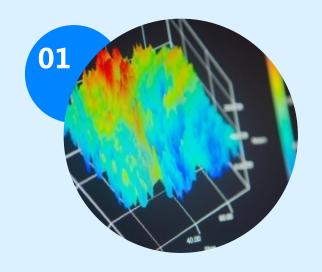
COMSOL Multiphysics软件

运用COMSOL Multiphysics多物理场耦合分析软件,实现温度场、应力场等多物理场的耦合模拟。

● 建立三维模型

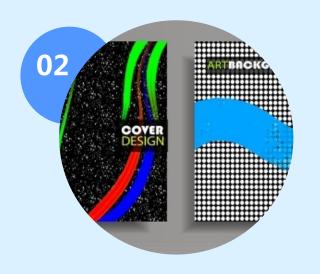
根据实际激光熔覆工艺参数,建立TC4基体和Ni60涂层的三维几何模型。

● 网格划分

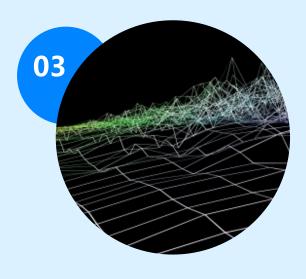

采用合适的网格类型和尺寸,对模型进行网格划分,以确保计算精度和效率。

● 网格无关性验证

进行网格无关性验证,以确定合适的网格密度和计算精度。



边界条件与热源模型


根据实际工艺条件,设置 模型的初始温度、对流换 热系数、辐射率等边界条 件。

边界条件设置

热源模型选择

选用合适的热源模型,如 高斯热源、双椭球热源等, 以模拟激光束的能量分布 和作用方式。

热源参数确定

根据激光功率、光斑直径、 扫描速度等工艺参数,确 定热源模型的参数。

求解过程及后处理

01

求解设置

选择合适的求解器和时间步长,设置收敛准则和迭代次数等求解参数。

02

温度场求解

通过有限元方法求解温度场分布, 得到不同时刻的温度场云图和数据。

热循环特性分析

提取关键点的温度历程数据,分析热循环特性,如加热速度、冷却速度、热影响区深度等。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/836132115243010141