

原子结构与元素周期表(第1课时) 高一化学人教必修第一册PPT课件

- 原子结构概述
- 元素周期表简介
- 原子结构模型发展历史
- 原子核外电子排布规律
- 元素性质与原子结构关系
- 元素周期表中的重要族及其特性

原子结构概述

Chapter >>>>

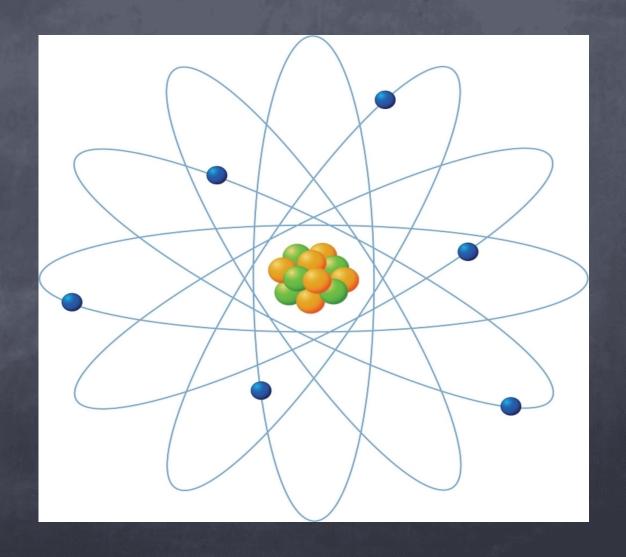
原子概念及起源

01

原子概念

原子是构成物质的最小单位,不可再分割。

02


原子起源

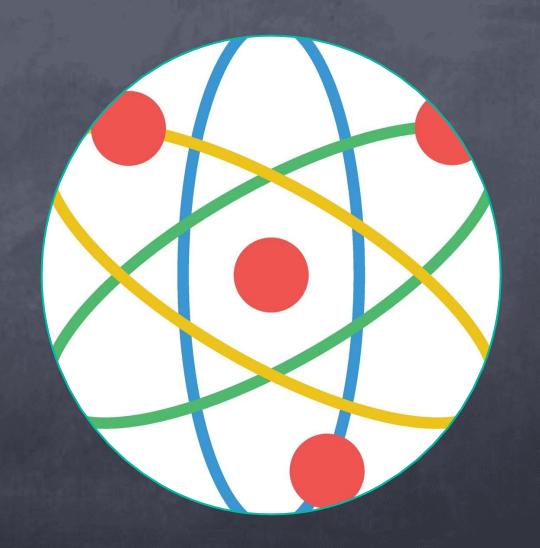
来源于宇宙大爆炸,由基本粒子逐步组合形成。

03

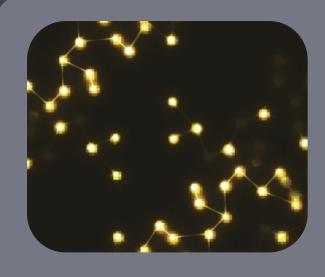
原子学说

物质是由原子和分子构成的,分子是原子通过化 学键结合而成的。

原子组成与结构

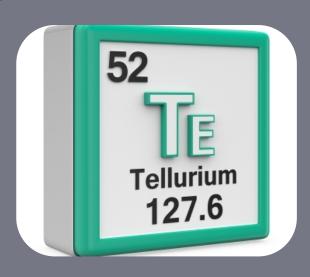

01

原子由原子核和核外电子组成。

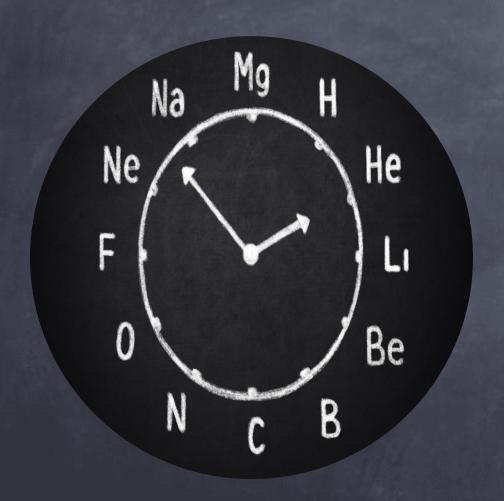

原子核位于原子中心,由质子和中子组成,质子数决定 02 元素的种类。

03

核外电子围绕原子核运动,形成电子云,电子的排布遵循能量最低原理。


原子核与核外电子

原子核的半径极小,约为原子半径的万分之一。



原子核的质量几乎等于整个原子 的质量,电子质量极小,可以忽 略不计。

原子核带正电荷,核外电子带负 电荷,整个原子呈电中性。

原子序数与原子量

原子序数

元素原子核内的质子数称为原子序数,它决定了元素的种类和在周期 表中的位置。

原子量

一个原子的质量以一种碳原子质量的\$frac{1}{12}\$为基准,称为该原子的相对原子质量,简称原子量。

原子序数与原子量的关系

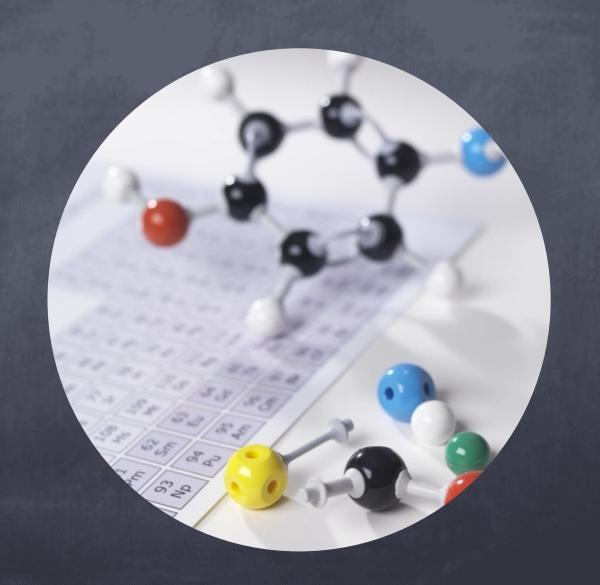
原子序数=质子数=核电荷数=核外电子数,原子量=质子数+中子数

元素周期表简介

Chapter >>>>

元素周期表排列规律

原子序数递增


元素按照原子序数递增的顺序从左到右排列,每一行称为一个周期。

原子结构周期性变化

随着原子序数的增加,元素的原子结构呈现周期性的变化,即电子排布、化合价、半径等性质具有相似性。

元素性质周期性变化

随着原子序数的增加,元素的性质也呈现周期性的变化,如金属性、非金属性、氧化态等。

周期表结构与分区

● 周期表结构

元素周期表由多个横行(周期)和纵列(族)组成,每个元素占据一个单元格。

● 周期表分区

周期表根据元素性质的不同,可分为s区、p区、d区、f区和ds区等,其中s区包括第IA族和第IIA族元素,p区包括第IIIA族到第0族元素,d区包括过渡元素,f区包括镧系和锕系元素。

族的特征

同一族的元素具有相似的化学性质,如IA族的碱金属元素具有强还原性和活泼性。

原子序数与元素性质关系

原子序数决定元素种类

原子序数即原子核中的质子数,决定了元素的种类和化学性质。

原子序数与元素性质关系

原子序数的变化导致原子半径、电负性、电离能等性质的变化,进而影响元素的化学反应性和 形成的化学键类型。

原子序数与元素周期表位置关系

原子序数决定了元素在周期表中的位置,进而决定了元素的电子排布和化合价等性质。

元素周期表应用举例

预测未知元素性质

根据元素在周期表中的位置,可以预测其可能的性质和行为,如 预测铯是一种活泼的金属元素。

寻找相似元素

通过比较不同元素在周期表中的 位置和性质,可以找到具有相似 性质的元素,如锆和铪在周期表 中处于同一族,具有相似的化学 性质。

指导化学研究

元素周期表为化学研究提供了重要的工具和指导,如指导化学反应的进行、合成新的化合物等。

应用于生产和生活

元素周期表在工业、农业、医学等领域具有广泛的应用,如制造化肥、农药、半导体材料等。

原子结构模型发展历史

Chapter >>>>

早期原子模型

● 古希腊哲学家德谟克利特提出原子论

物质由不可分割的微粒——原子组成。

● 古希腊哲学家亚里士多德提出四元素说

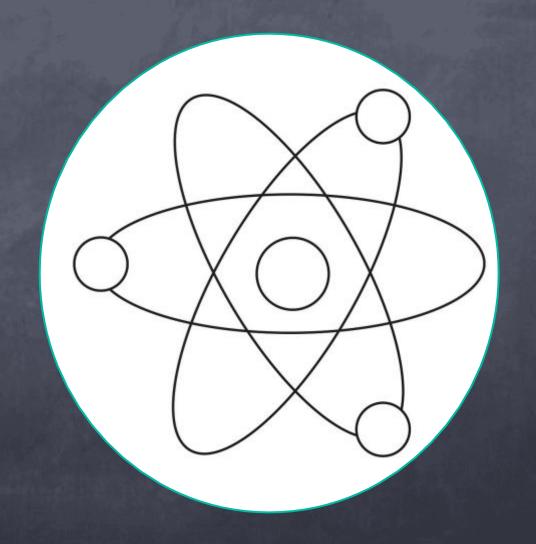
水、火、土、气是构成物质的基本元素。

● 古希腊哲学家伊壁鸠鲁提出原子论

原子是无限小且不可分割的微粒,具有重量和性质。

汤姆生发现电子

01

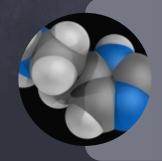

1897年,英国物理学家汤姆生在研究阴极射线时发现了电子,并测量了电子的质量。

(02)

汤姆生提出葡萄干布丁模型:原子是一个带正电荷的球体,内部镶嵌着许多带负电荷的电子。

03

汤姆生的发现打破了原子不可分割的传统观念,为原子 结构的研究奠定了基础。


卢瑟福行星模型

1911年,英国物理学家卢瑟福进行了α粒子散射实验,发现原子内部存在一个带正电荷的、致密的原子核。

卢瑟福提出了行星模型:原子核位于原子的中心,电子像行星一样绕原子核运动。

卢瑟福的行星模型解释了α粒子散射实验的结果,但无法解释电子在轨道上的稳定性。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/838127044111006141