课程介绍

在这个课程中,我们将全面介绍机器学习的预备知识。从基础的数学、概率论和编程语言开始,逐步深入到数据预处理、特征工程和常见机器学习算法的应用。通过实战案例演示,让学员对机器学习有更深入的理解和实

课程目标

掌握基础知识

通过学习数学、概率 论、统计学以及编程 语言的基础知识,为 后续的机器学习打下 坚实的基础。

熟悉工具使用

学习使用Python以及 相关的数据分析库, 如NumPy、Pandas和 Matplotlib,为实践 和项目开发做好准备。

理解数据处理

学习数据清洗、特征 工程等数据预处理技 能,为后续的模型训 练和优化做好铺垫。

掌握机器学习

了解机器学习的基本 算法及其应用,为独 立完成机器学习项目 奠定基础。

学习内容概览

基础知识

包括数学、概率论、 统计学和编程语言基 础,为后续学习打下坚 实基础。

工具使用

学习Python及其常用 数据分析库,如NumPy、 Pandas和Matplotlib, 为实践项目做好准备。

数据处理

掌握数据清洗、特征 工程等预处理技能,为 模型训练和优化做好 铺垫。

机器学习

学习机器学习的基本 算法及其应用,为独立 完成项目奠定基础。

预备知识重要性

奠定基础

掌握数学、概率统计和编程语言 等基础知识,为后续机器学习学 习奠定坚实的基础。

数据处理能力

学习数据预处理技能,包括数据 清洗和特征工程,为模型训练优 化做好准备。

实践能力培养

通过学习工具使用和机器学习算 法应用,培养独立完成项目的实 践能力。

数学基础知识

微积分

了解微分和积分的基本概念,掌握常见函数的求导和积分方法。这是机器学习中许多优化算法的基础。

线性代数

学习矩阵、向量、特征值等概念。这些 在机器学习中用于建模和优化问题的表 示。

概率统计

掌握随机变量、概率分布、统计推断等知识。这对于理解机器学习模型的工作原理很重要。

概率论基础

1 概率概念

理解随机事件的概率定义及其计算方法,为 学习概率分布和统计推断奠定基础。

3 条件概率

理解条件概率的概念及其在机器学习中的应用,如贝叶斯理论等。

2 概率分布

学习常见的概率分布模型,如正态分布、二项分布等,并掌握它们的性质和应用场景。

4 随机变量

掌握随机变量的定义和性质,为后续的统计推断奠定基础。

统计学基础

1 描述性统计

学习收集、整理和分析数据的方法,包括均值、中位数、方差等常用统计量的计算。为 进一步的数据分析奠定基础。

3 统计推断

学习参数估计、假设检验等统计推断的基本方法,为后续分析数据、评估模型提供统计学支撑。

2 概率分布

掌握常见的离散概率分布如二项分布和泊松 分布,以及连续概率分布如正态分布的性质 和应用。这对于理解机器学习中的概率模型 很重要。

4 回归分析

理解线性回归、逻辑回归等常用回归模型, 能够解释变量之间的关系并进行预测。这是 机器学习中广泛使用的基础技术。

编程语言基础

语法结构

掌握常见编程语言如 Python、Java、C++ 的基本语法结构,包 括变量、数据类型、 运算符、控制流等。 这些是编程的基础。

数据结构

学习列表、字典、集 合等常见数据结构的 定义和使用方法。这 些为数据处理和算法 实现提供支撑。

函数编程

理解函数的定义、参数传递和返回值等概念。函数是实现代码复用和抽象的重要手段。

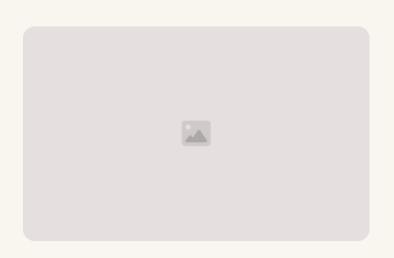
面向对象

学习类、对象、继承 等面向对象编程的基 本原理。这是构建复 杂程序的重要思想。

Python简介

Python是一种通用的、高级的编程语言,以其简单、优雅和可读性著称。它被广泛应用于数据分析、机器学习、自动化等领域,是数据科学家和工程师的首选语言之一。

Python拥有丰富的标准库和第三方库,为开发人员提供了强大的工具和功能,大大提高了开发效率。它能够与其他编程语言无缝集成,是一种灵活且可扩展的编程语言。



Python环境搭建

高效的Python开发环境搭建是掌握Python编程的关键一步。从安装Python、设置环境变量到选择合适的 IDE,一步一步打造您的Python编程基础。

Python基本语法

基本语法结构

Python采用简洁明了的语法结构, 如缩进表示代码块、变量命名规 范、基本数据类型定义等,易于 初学者掌握。

控制流程

Python提供if-else、for、while等常见的控制流结构,帮助开发者编写复杂的条件判断和循环逻辑。

函数定义

Python支持函数定义,可通过参数传递和返回值实现代码复用和模块化设计,提高开发效率。

Python数据类型

12

数字类型

Python支持整数、浮点数和复数 等常见的数字类型。可进行算术 运算并支持数学函数。

文本类型

Python的字符串类型可表示文本 数据,支持索引、切片和格式化 等操作,广泛应用于数据处理。

布尔类型

Python的布尔类型只有True和 False两个值,用于条件判断和逻辑运算,是控制流的基础。

Python控制流

If-Else 语句

Python的条件判断语句if-else可用于实现基本的逻辑分支,灵活控制程序的执行流程。

While 循环

While循环可根据特定条件持续执行代码块,适用于不确定循环次数的场景。

For 循环

Python的for循环可轻松遍历各种可迭代对象, 如列表、元组和字符串,实现重复性操作。

Try-Except 异常处理

Python的异常处理机制可捕获和处理运行时错误,提高程序的健壮性和可靠性。

Python函数

f(x)

函数定义

Python允许用户自定义函数,通过def关键字声明函数名称、参数列表和函数体,实现代码的模块化和复用。

参数传递

函数可接受各种数据类型的参数,包括必选参数、默认参数和可变 参数等,灵活满足不同的调用需求。

返回值

使用return语句可以让函数返回 计算结果,支持单返回值和多返 回值,增强函数的表达能力。

以上内容仅为本文档的试下载部分,	为可阅读页数的一半内容。	如要下载或阅读全文,	请访问: https://d.	book118.com/856054020044	<u>010143</u>