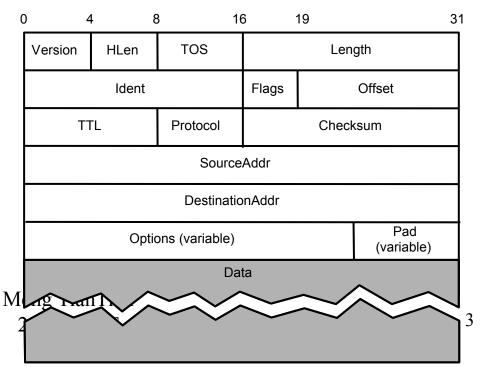
Internetworking

Simple Internetworking (IP) 4.1 Subnetting 4.3.1 IP Version 6 (IPv6) 4.3.5

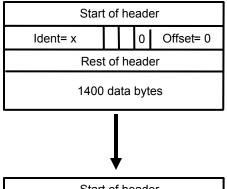
Meng TianTian 207 NJUPT

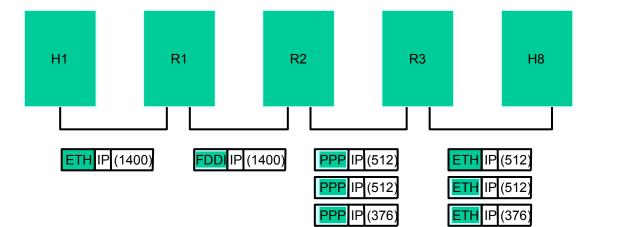

1

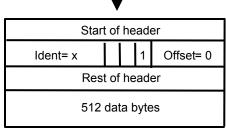
IP Internet

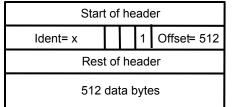
Network 1 (Ethernet) Concatenation of Networks H7 H8 R3 H2 H3 Network 4 (point-to-point) Network 2 (Ethernet) H4 Network 3 (FDDI) • Protocol Stack H6 H5 H1 H8 TCP TCP R3 R2 **R1** IP IP IP IP IP FDDI FDDI PPP PPP ETH ETH ETH ETH

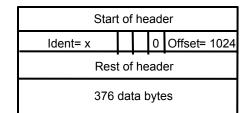
Service Model

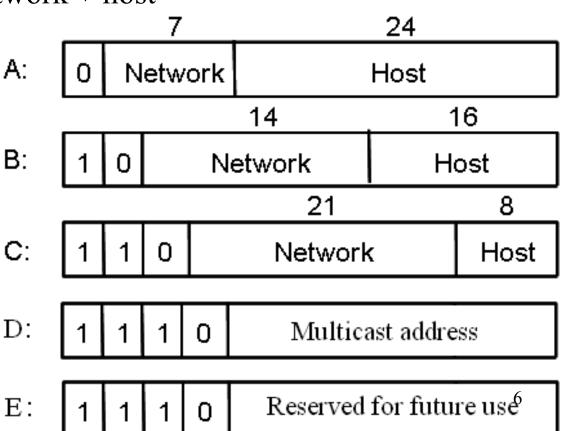

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Datagram format




Fragmentation and Reassembly

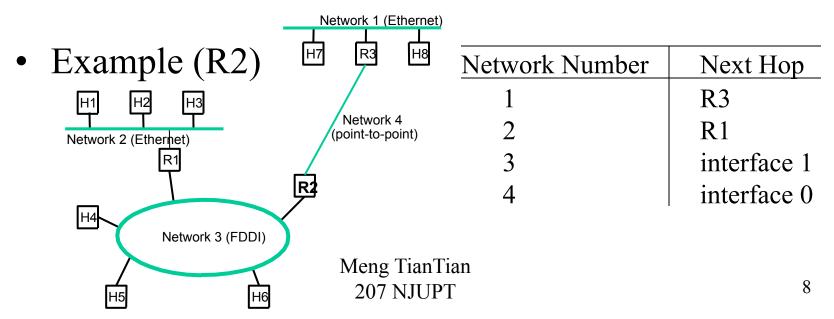

- Each network has some MTU
- Design decisions
 - fragment when necessary (MTU < Datagram)
 - try to avoid fragmentation at source host
 - re-fragmentation is possible
 - fragments are self-contained datagrams
 - delay reassembly at destination host
 - do not recover from lost fragments


Example



Global Addresses

- Properties
 - globally unique
 - hierarchical: network + host
- Dot Notation
 - 10.3.2.4
 - 128.96.33.81
 - 192.12.69.77



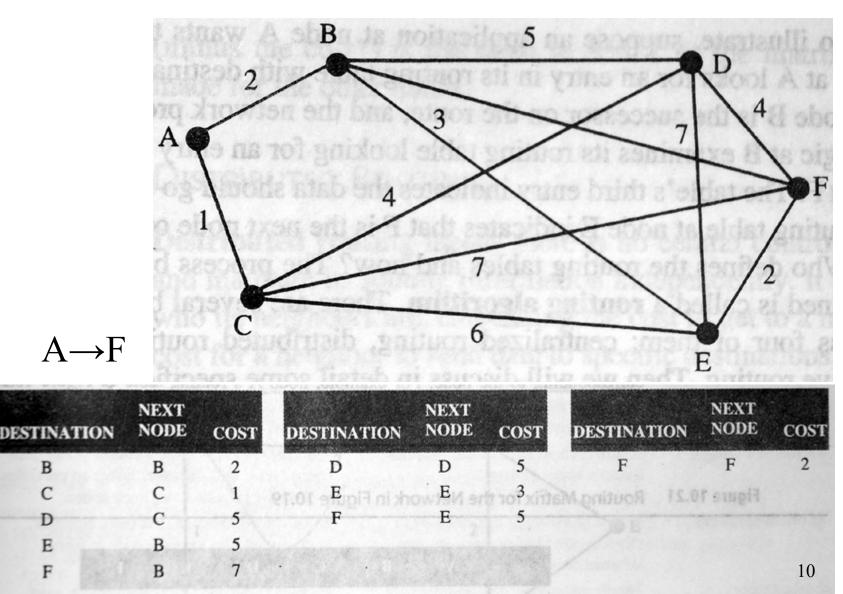
IP Address

	the max net NO.	the first available net ID	the last available net ID	the max number in the net
А	126 (2 ⁷ – 2)	1	126	16,777,214
В	16,384 (214)	128.0	191.255	65,534
С	2,097,152 (221)	192.0.0	223.255.255	254

Datagram Forwarding

- Strategy
 - every datagram contains destination's address
 - if connected to destination network, then forward to host
 - if not directly connected, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table

Routers


Routers are often called "layer 3 devices". They operate at the third layer, or OSI network layer.

The device that connects a LAN to a WAN or a WAN to a WAN.

A router accepts an outgoing packet, removes any LAN headers and trailers, and encapsulates the necessary WAN headers and trailers.

Because a router has to make wide area network routing decisions, the router has to dig down into the network layer of the packet to retrieve the network destination address.

Routing Tables

(a) Partial routing table for node A (b) Partial routing table for node B (c) Partial routing table for node E

В

C

D

E

F

Routing – The Problem

- Choose the best path from A to X, knowing (at A) only the logical address of X.
- "Best" could mean
 - Smallest number of hops
 - Shortest time delay
 - Least congested
 - Cheapest
 - Administratively allowed
 - Easiest to discover
 - Any combination of the above
- Solution must be reasonably quick and guaranteed to avoid loops

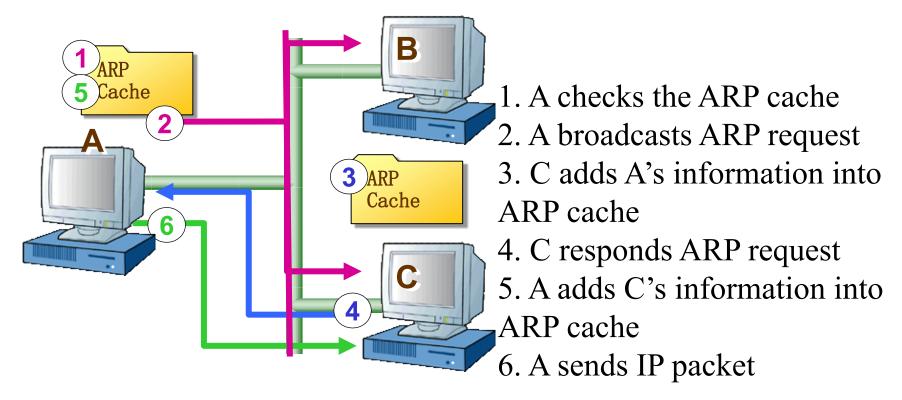
Routing Algorithm

- The way to define the routing tables
- Four types:
 - Centralized routing: 集中式路由
 - Distributed routing: 分布式路由
 - Static routing: 静态路由
 - Adaptive routing: 自适应路由

Centralized Routing

- All interconnection is generated and maintained at a single central location. That location broadcasts this information to all network nodes.
- Routing matrix
- $A \rightarrow F$:

A-B-E-F


		A	B	С	D	E	F
(c) Partiation	A	fot <u>-si</u> de	В	01612 C -9 (6	C bo	Beld	В
	В	Α		Α	D	Е	E
source node	С	Α	Α		D	Е	F
	D	С	В	С		F	F
	Е	В	В	С	F	-13	F
the did minist	F	Е	E	С	D	E	detina

Address Translation

- Map IP addresses into physical addresses
 - destination host
 - next hop router
- Techniques
 - encode physical address in host part of IP address
 - e.g. PH add=0010000101010001; IP add=128.96.33.81
 - table-based $\frac{11}{22}$
 - 33 81

- ARP
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed

Address Translation

ARP Packet Format

0	8	3 1	6 31			
	Hardware type = 1		ProtocolType = 0x0800			
	HLen = 48	PLen = 32	Operation			
	SourceHardwareAddr (bytes 0 – 3)					
	SourceHardwareA	Addr (bytes $4 - 5$)	SourceProtocolAddr (bytes 0 – 1)			
	SourceProtocolA	ddr (bytes 2 – 3)	TargetHardwareAddr (bytes 0 – 1)			
	TargetHardwareAddr (bytes 2 – 5)					
	TargetProtocolAddr (bytes 0 – 3)					

ARP Details

- Request Format
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target-Physical/Protocol addresses
- Notes
 - table entries timeout in about 10 minutes
 - update table with source when you are the target

Internet Control Message Protocol

- ICMP
- When a router receives an IP packet and finds errors, what should it do?
- Used by the routers to report errors and unexpected events, test the state of the network, perform congestion control, and router updates.
- The Internet is closely monitored by the routers using ICMP.

Internet Control Message Protocol (ICMP)

- Ping:
 - A host sends an ICMP "echo" message
 - As IP packet, "echo" message gets routed to destination
 - At destination, respond by sending an ICMP "echo reply" message
- Redirect (from router to source host)
- Destination unreachable (protocol, port, or host)
- TTL exceeded (so datagrams don't cycle forever)
- Checksum failed
- Reassembly failed
- Cannot fragment

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <u>https://d.book118.com/877136155066006132</u>