
硫及其化合物

第 九 讲

化学

要点导引・定锚点

教材研析•固基础

1.硫元素的存在

- (1)游离态:火山口附近或地壳的岩层中。
- (2)化合态:主要以硫化物[如黄铁矿(FeS_2)、黄铜矿($CuFeS_2$)]、硫酸盐[如石膏($CaSO_4 \cdot 2H_2O$)、芒硝($Na_2SO_4 \cdot 10H_2O$)]等形式存在。

2.物理性质

黄色晶体,质脆,易研成粉末。硫难溶于水,微溶于酒精,易溶于二硫化碳(CS₂)。

3.化学性质

(1)氧化性。

$$H_2+S$$
 \longrightarrow H_2S

(2)还原性。

重点提示

- ①硫俗称硫黄。
- ②S元素位于元素周期表第三周期第VIA族。 S原子易得2个电子而使S元素显—2价;与O元素比较,S元素非金属性弱一些,有时还显+4、+6价。
- ③硫单质的氧化性较弱,在与变价金属(如Fe、Cu)反应时,一般只能生成低价态金属硫化物(如FeS、Cu₂S)。

1.物理性质

无色、有刺激性气味的有毒气体,密度比空气大,易溶于水(通常情况下,约为1:40)。

2.化学性质

性质	实验	现象	原理	
酸氧物通性化的性	把充满SO ₂ 的试 管倒立在水中	试管内液面上 升	$SO_2+H_2O \Longrightarrow$	H ₂ SO ₃ (可逆反应)
	将SO ₂ 通 入滴有酚 酞的NaOH 溶液中	SO ₂ 少量时,溶 液红色变浅 ;SO ₂ 足量时,溶液 红色褪去	SO ₂ +2NaOH—— (SO ₂ 少量) SO ₂ +NaOH———	=Na ₂ SO ₃ +H ₂ O NaHSO ₃ (SO ₂ 足量)
	将SO ₂ 通入澄清 石灰水中	溶液先变浑浊 后变澄清	SO ₂ +Ca(OH) ₂ — (SO ₂ 少量) 2SO ₂ +Ca(OH) ₂ — (SO ₂ 足量)	

	4=~^ 이 네트 스타 보다 (전 4=~> 이 네트 스타		
还	将SO2通入氯水中	浅黄绿色褪去	$SO_2+Cl_2+2H_2O$ \longrightarrow $2HCl+H_2SO_4$
	将SO2通入溴水中	橙色褪去	$SO_2+Br_2+2H_2O$ — $2HBr+H_2SO_4$
原	与O ₂		2SO ₂ +O ₂ 催化剂 2SO ₃
性	反应		(工业制硫酸的第二步)
氧	将一瓶SO,与一瓶	瓶壁上有黄色	
化	H ₂ S气体混合	固体和水雾	$2H_2S+SO_2$ $2H_2O+3S$
性	1120 (P#166 L)	四十十十八十分	
漂	将SO。通入品红溶	红色褪去,加	二氧化硫能与某些有色物质反
原 白	液,观察现象;加热,	热后又恢复红色	应生成不稳定的无色物质,无色
世	再观察现象		物质容易分解而恢复为原来的
	丁丁/火山 次下 ・火山 次下		颜色

3.主要用途

- (1)用于漂白纸浆、毛、丝。
- (2)用于杀菌消毒。
- (3)食品添加剂(防腐剂、抗氧化剂)。


重点提示

①可逆反应是指在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应, 同"一"连接。如:SO₂+H₂O—H₂SO₃。

②三种主要类型的漂白剂:SO₂的漂白性发生的是非氧化还原反应,且具有可逆性;HClO、H₂O₂、O₃等物质的漂白性是氧化性漂白,不具有可逆性;活性炭的漂白性是吸附性漂白,属于物理变化。

1.硫酸的工业制法

(1)硫黄或黄铁矿与氧气反应:S+O₂ 点燃 SO_2 、4FeS₂+11O₂ 高温

 $2Fe_2O_3+8SO_2$ o

(2)二氧化硫的催化氧化:2SO₂+O₂ V₂O₅ 2SO₃。

(3)三氧化硫的吸收:SO₃+H₂O—H₂SO₄。

2.物理性质

硫酸是无色、黏稠的油状液体,沸点高、难挥发。浓硫酸能与水以任意比混溶,溶解时放出大量的热。

3.化学性质

(1)硫酸是二元强酸,具有酸的通性。

以稀硫酸为例,能发生以下反应:

$$H_2SO_4+2NaOH$$
— $Na_2SO_4+2H_2O$

$$H_2SO_4+Mg$$
 $MgSO_4+H_2\uparrow$

$$H_2SO_4+MgO$$
— $MgSO_4+H_2O$

$$H_2SO_4+Na_2CO_3$$
— $Na_2SO_4+H_2O+CO_2\uparrow$

$$H_2SO_4+BaCl_2$$
— $BaSO_4\downarrow+2HCl$

- (2)浓硫酸的三大特性。
- ①吸水性和脱水性。

特性	吸水性	脱水性
含义	吸收存在于周围环境中的水	将蔗糖、纸张、棉布和木材等有机
	分,包括晶体中的结晶水	物中的氢和氧按水的组成比脱去
本质	物理变化	化学变化
实例	作为干燥剂(干燥CO ₂ 、Cl ₂ 等)	浓硫酸与蔗糖反应

②强氧化性。

常温下,浓硫酸能使铁、铝等少数金属发生钝化。

在加热条件下,能与不活泼金属反应: $Cu+2H_2SO_4$ (浓)——CuSO₄+SO₂↑+2H₂O。

在加热条件下,能与某些非金属反应: $C+2H_2SO_4(浓)$ ——2 $SO_2\uparrow+CO_2\uparrow+2H_2O_s$

4.主要用途

硫酸是重要的化工原料,可用于生产化肥、农药、炸药、染料和盐类等。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/878034046042007003