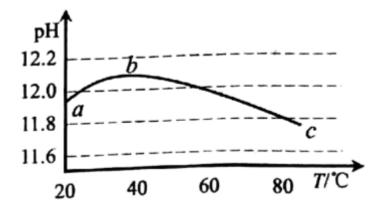
2025 届湖南省怀化市中方县第二中学高三下学期期末考试化学试题试卷

注意事项:

- 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
- 2. 选择题必须使用 2B 铅笔填涂; 非选择题必须使用 0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
- 3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效:在草稿纸、试题卷上答题无效。
- 4. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
- 一、选择题(每题只有一个选项符合题意)
- 1、肼(N₂H₄)是一种高效清洁的火箭燃料。25℃、101kPa 时,0.25molN₂H₄(g)完全燃烧生成氮气和气态水,放出 133.5kJ 热量。下列说法正确的是(
- A. 该反应的热化学方程式为 $N_2H_4(g)+O_2(g)=N_2(g)+2H_2O(g)$ $\Delta H=-534kJ\cdot mol^{-1}$
- B. N₂H₄的燃烧热 534kJ·mol⁻¹
- C. 相同条件下,1molN₂H₄(g)所含能量高于 1molN₂(g)和 2molH₂O(g)所含能量之和
- D. 该反应是放热反应,反应的发生不需要克服活化能
- 2、下列过程中没有发生电子转移的是()
- - C. 大气固氮
- D. 生物固氮
- 3、对甲基苯乙烯(—————)是有机合成的重要原料。下列对其结构与性质的推断错误的是()
- A. 分子式为C₉H₁₀
- B. 能发生加聚反应和氧化反应


A. 液氨作制冷剂 B. 合成氨

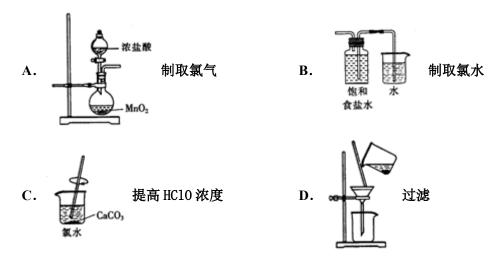
- C. 具有相同官能团的芳香烃同分异构体有 5 种 (不考虑立体异构)
- D. 分子中所有原子可能处于同一平面
- 4、以下情况都有气体产生,其中不产生红棕色气体的是()
- A. 加热浓硝酸

B. 光照硝酸银

C. 加热硝酸钙

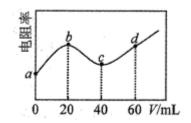
- D. 加热溴化钾和浓硫酸混合物
- 5、利用传感技术测定一定浓度碳酸钠溶液的 pH 与温度(T)的关系, 曲线如图,下列分析错误的是

- A. 碳酸钠水解是吸热反应
- B. ab 段说明水解平衡正向移动
- C. be 段说明水解平衡逆向移动
- D. 水的电离平衡也对 pH 产生影响
- 6、用下图所示装置进行下列实验:将①中溶液滴入②中,预测的现象与实际相符的是


选项	①中物质	②中物质	预测②中的现象
A	稀盐酸	碳酸钠与氢氧化钠的混合溶液	立即产生气泡
В	浓硝酸	用砂纸打磨过的铝条	产生红棕色气体
С	草酸溶液	高锰酸钾酸性溶液	溶液逐渐褪色
D	氯化铝溶液	浓氢氧化钠溶液	产生大量白色沉淀

- **A. A**
- B. B
- **C. C**
- D. D
- 7、下列各反应对应的离子方程式正确的是()
- A. 次氯酸钠溶液中通入过量二氧化硫 CIO⁻+H2O+SO2→HCIO+HSO3⁻
- B. 向碳酸氢钠溶液中加入过量氢氧化钙溶液 2HCO₃ ++Ca²⁺+2OH → CaCO₃ ↓ +2H₂O+CO₃²⁻
- C. 氢氧化钡溶液与硫酸溶液反应得到中性溶液 Ba²⁺+OH⁻+H⁺+SO₄²⁻→BaSO₄ ↓ +H₂O
- D. 50 mL 1mol/L 的 NaOH 溶液中通入 0.03mol H₂S: 5OH⁻+3H₂S→HS⁻+2S²⁻+5H₂O
- 8、下列化学用语或模型表示正确的是()
- A. H_2S 的电子式: $H^+[:S:]^{2-}H^+$

- B. S²⁻的结构示意图: (+18) 2 8 8
- C. CH₄分子的球棍模型:



- **D**. 质子数为 6,中子数为 8 的核素: ${}^{14}_{6}$ C
- 9、设 N_A 为阿伏加德罗常数的值。下列关于常温下 0.1 mol/ $LNa_2S_2O_3$ 溶液与 pH=1 的 H_2SO_4 溶液的说法正确的是
- A. 1 L pH=1 的 H₂SO₄溶液中,含 H+的数目为 0.2 N_A
- B. 1mol 纯 H₂SO₄ 中离子数目为 3 N_A
- C. 含 15.8 g Na₂S₂O₃ 的溶液种阴离子数目大于 0.1 N_A
- D. Na₂S₂O₃ 与 H₂SO₄溶液混合产生 22.4 L 气体时转移电子数为 2 N_A
- 10、为制取含 HC10 浓度较高的溶液,下列图示装置和原理均正确,且能达到实验目的的是

- 11、下列仪器洗涤时选用试剂错误的是()
- A. 木炭还原氧化铜的硬质玻璃管(盐酸)
- B. 碘升华实验的试管(酒精)
- C. 长期存放氯化铁溶液的试剂瓶 (稀硫酸)
- D. 沾有油污的烧杯(纯碱溶液)
- 12、从古至今化学与生产、生活密切相关。下列说法正确的是()
- A. 宋朝王希孟的画作《千里江山图》所用纸张为宣纸,其主要成分是碳纤维
- B. 汉代烧制出"明如镜、声如罄"的瓷器,其主要原料为石灰石
- C. "司南之杓(勺), 投之于地, 其柢(勺柄)指南"中的"杓"含 Fe₂O₃
- D. 港珠澳大桥使用的聚乙烯纤维吊绳是有机高分子化合物
- 13、298K 时,向 20mL 浓度均为 0.1mo1/L 的 MOH 和 NH₃·H₂O 混合液中滴加 0.1mol 的 CH₃COOH 溶液,测得混合液的电阻率(表示电阻特性的物理量)与加入 CH₃COOH 溶液的体积(V)的关系如图所示。已知 CH₃COOH 的 K_a

=1.8×10⁻⁵, NH₃•H₂O 的 K_b =1.8×10⁻⁵。下列说法错误的是()

- A. MOH 是强碱
- B. c 点溶液中浓度: c (CH₃COOH)<c(NH₃·H₂O)
- C. d 点溶液呈酸性
- D. a→d 过程中水的电离程度先增大后减小
- 14、下列说法中正确的是()
- A. H₂O₂属于共价化合物,分子中只含有共价键
- B. Na₂O₂属于离子化合物,该物质中只含有离子键
- C. 分子间作用力 CH₄<SiH₄,所以 CH₄沸点高
- D. CO2 中碳原子与氧原子间存在共价键,所以干冰为原子晶体
- 15、下列物质中,由极性键构成的非极性分子是
- A. 氯仿
- B. 干冰
- C. 石炭酸
- D. 白磷
- 16、氯酸是一种强酸,浓度超过 40%时会发生分解,反应可表示为: $aHClO_3=bO_2\uparrow+cCl_2\uparrow+dHClO_4+eH_2O$,用湿润的淀粉碘化钾试纸检验气体产物时,试纸先变蓝后褪色。下列说法正确的是(___)
- A. 由反应可确定:氧化性:HClO₄>HClO₃
- B. 变蓝的淀粉碘化钾试纸褪色是因为可能发生了: $4Cl_2+I_2+6H_2O=12H^++8Cl^-+2IO_3^-$
- C. 若氯酸分解所得混合气体, 1 mol 混合气体质量为 47.6 g,则反应方程式可表示为 26HClO3
- $=15O_2\uparrow+8Cl_2\uparrow+10HClO_4+8H_2O$
- D. 若化学计量数 a=8, b=3,则该反应转移电子数为 20e-
- 二、非选择题(本题包括5小题)
- 17、氟西汀 G 是一种治疗抑郁性精神障碍的药物,其一种合成路线如图:

已知:LiAIH4是强还原剂,不仅能还原醛、酮,还能还原酯,但成本较高。

回答下列问题:

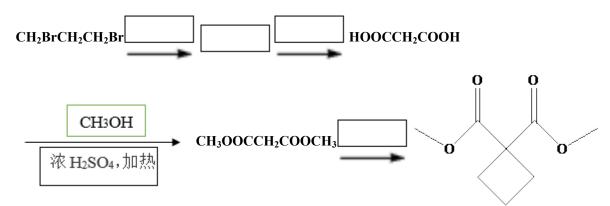
- (1) 碳原子上连有 4 个不同的原子或基团时,该碳称为手性碳。写出 D 的结构简式,用星号(*)标出 D 中的手性碳。
- (2) ④的反应类型是。
- (3) C 的结构简式为___。
- (4) G 的分子式为。
- (5) 反应⑤的化学方程式为。
- (6)已知 M 与 D 互为同分异构体,在一定条件下能与氯化铁溶液发生显色反应。M 分子的苯环上有 3 个取代基,其中两个相同。符合条件的 M 有 种。
- OH (7) OSO₂CH₃也是一种生产氟西汀的中间体,设计以 和 CH₃SO₂Cl 为主要原料制备它的合成路线 (无机试剂任选)。
- 18、化合物 I (戊巴比妥)是临床常用的镇静、麻醉药物,其合成路线如下:

已知: B、C 互为同分异构体

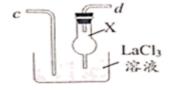
R'、R"、R""代表烃基, R 代表烃基或氢原子。

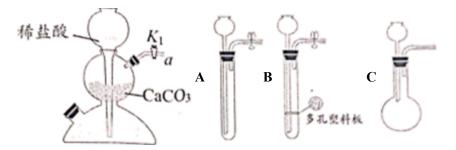
回答下列问题:

- (1) F 的官能团的名称为_____, $F \rightarrow G$ 的反应类型是_____。
- (2)试剂 a 的结构简式_____; I 的结构简式____。

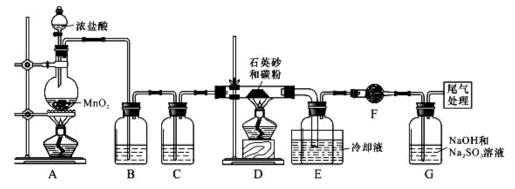

(3)写出 B → D 的化学方程式。

设计实验区分 B、D 所用的试剂及实验现象为____、___。


- (4)写出 E → F 的化学方程式____。
- (5)已知: 羟基与碳碳双键直接相连的结构不稳定,同一个碳原子上连接多个羟基的结构不稳定,满足下列要求的 D 的 所有同分异构体共 种。
- a. 能发生银镜反应
- **b**.能与 Na 反应
- c. 能使 Br₂ 的 CCl₄ 溶液褪色


如下,请将有关内容补充完整______

- 19、碳酸镧咀嚼片是一种不含钙和铝的磷酸盐结合剂,有效成分碳酸镧难溶于水,可用于慢性肾衰患者高磷血症的治疗。
- I.碳酸镧可由 LaCl₃ 和碳酸氢铵为原料来制备,避免生成碱式碳酸镧[La(OH)CO₃],整个反应需在较低的 pH 条件下进行。化学兴趣小组利用下列装置在实验室中制备碳酸镧。


- (1) 仪器 X 的名称是 。
- (2) 如下左图装置是启普发生器,常用于实验室制取 CO_2 、 H_2 等气体,具有"随开随用、随关随停"的功能。右图 装置与启普发生器原理类似,也可用于实验室制取 CO_2 的装置的是_____ (填选项字母)。

(3) 关闭活塞 K₂, ____, 说明如下装置气密性良好。

- (4) 装置乙用于制备氨气,可以选用的试剂是 (填选项字母)。
- A、NH₄Cl 固体和 Ca(OH)₂ 固体 B、生石灰和浓氨水 C、碱石灰和浓氨水 D、无水 CaCl₂和浓氨水
- (5) 实验装置接口的连接顺序是: a 接___。为制得纯度较高的碳酸镧,实验过程中需要注意的问题是__。
- II. 可用碳酸氢钠溶液代替碳酸氢铵溶液,与氯化镧反应制备碳酸镧。
- (6) 精密实验证明: 制备过程中会有气体逸出,则制备过程总反应的离子方程式是。 。
- (7) 制备时,若碳酸氢钠滴加过快,会降低碳酸镧的产率,可能的原因是____。
- III、碳酸镧咀嚼片中有效成分测量。
- (8) 准确称取碳酸镧咀嚼片 ag,溶于 10.0 mL 稀盐酸中,加入 10 mL NH_3 - NH_4 C1 缓冲溶液,加入 0.2 g 紫脲酸铵混合指示剂,用 0.5 mo1 L⁻¹,EDTA (Na_2H_2Y) 标准溶液滴定至呈蓝紫色(La^{3+} + H_2y^{2-} = LaY^- + $2H^+$),消耗 EDTA 标准溶液 VmL。则咀嚼片中碳酸镧(摩尔质量为 458 g/mol)的质量分数 w=
- 20、单晶硅是信息产业中重要的基础材料。工业上可用焦炭与石英砂(SiO₂)的混合物在高温下与氯气反应生成 SiCl₄ 和 CO, SiCl₄ 经提纯后用氢气还原得高纯硅。以下是实验室制备 SiCl₄ 的装置示意图:

实验过程中,石英砂中的铁、铝等杂质也能转化为相应氯化物,SiCl₄、AlCl₃、FeCl₃ 遇水均易水解,有关物质的物理常数见下表:

物质	SiCl ₄	AlCl ₃	FeCl ₃
沸点/℃	57.7	_	315
熔点/℃	-70.0	_	_
升华温度/℃	_	180	300

(1)装置 B 中的试剂是	,装置 D 中制备 SiCl ₄ 的化学方程式是	
(1)发目的中的体剂定	,发目,PIPI的公子方在孔定	•

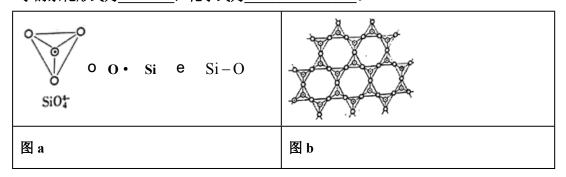
- (2) D、E 间导管短且粗的作用是____。
- (3) G 中吸收尾气一段时间后,吸收液中肯定存在 OH^- 、 CI^- 和 SO_4^{2-} ,请设计实验,探究该吸收液中可能存在的其他酸根离子(忽略空气中 CO_2 的影响)。

(提出假设) 假设 1: 只有 SO₃²-; 假设 2: 既无 SO₃²-也无 ClO⁻; 假设 3: _____。

(设计方案进行实验)可供选择的实验试剂有: $3 \text{mol/LH}_2 \text{SO}_4$ 、1 mol/LNaOH、 0.01mol/LKMnO_4 、溴水、淀粉-KI、品红等溶液。

取少量吸收液于试管中,滴加3mol/LH $_2$ SO $_4$ 至溶液呈酸性,然后将所得溶液分置于 a、b、c 三支试管中,分别进行下列实验。请完成下表:

序号	操作	可能出现的现象	结论
1	向 a 试管中滴加几滴溶液	若溶液褪色	则假设1成立
		若溶液不褪色	则假设2或3成立
2	向 b 试管中滴加几滴溶液	若溶液褪色	则假设1或3成立
		若溶液不褪色	假设2成立
3	向 c 试管中滴加几滴溶液		假设 3 成立


21、硅铁合金广泛应用于冶金工业,可用于铸铁时的脱氧剂、添加剂等,回答下列问题:
(1) 基态 Fe 原子价层电子的电子排布图为,基态 Si 原子电子占据最高能级的电子云轮廓图为形。
(2) 绿帘石的组成为 $\operatorname{Ca_2FeAl_2}\left(\operatorname{SiO_4}\right)\left(\operatorname{Si_2O_7}\right)\operatorname{O}(\operatorname{OH})$,将其改写成氧化物的形式为
(3) ${ m SiCl_4}$ 分子的中心原子的价层电子对数为,分子的立体构型为;四卤化硅的熔、沸点如下,分
析其变化规律及原因。

SiF ₄	SiCl ₄	SiBr ₄	SiI ₄
------------------	-------------------	-------------------	------------------

熔点/K	182.8	202.7	278.5	393.6
沸点/K	177.4	330.1	408	460.6

(4) $\left[\mathrm{Fe}\left(\mathrm{H_2O}\right)_6\right]^{2+}$ 可与乙二胺($\mathrm{H_2NCH_2CH_2NH_2}$,简写为 en)发生如下反应:

(5) 在硅酸盐中, SiO_4^4 四面体(图 a)通过共用顶角氧离子可形成多种结构形式。图 b 为一种多硅酸根,其中 Si 原子的杂化形式为 ,化学式为 。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/878060022012007002