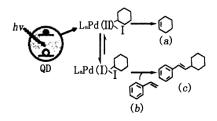
福建省厦门市松柏中学 2025 届高三第三次模拟考试化学试题

考生须知:

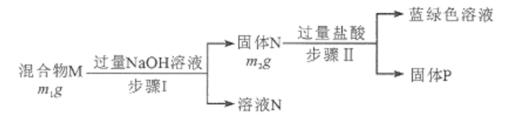
- 1. 全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用 2B 铅笔填涂; 非选择题的答案必须用黑色字迹的钢笔或答字笔写在"答题纸"相应位置上。
- 2. 请用黑色字迹的钢笔或答字笔在"答题纸"上先填写姓名和准考证号。
- 3. 保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
- 一、选择题(共包括22个小题。每小题均只有一个符合题意的选项)
- 1、如图所示,常温时将一滴管液体 Y 一次性全部挤到充满 O_2 的锥形瓶内(装置气密性良好),若锥形瓶内气体的最大物质的量是 a mol,久置后其气体的物质的量是 b mol,不存在 a>b 关系的是()

	X	Y	
A	过量 C、Fe 碎屑	稀 HCl	Y
В	过量 Na ₂ CO ₃ 粉末	稀 H ₂ SO ₄	
С	过量 Fe、Al 碎屑	浓 H ₂ SO ₄	X Joint Market
D	过量 Cu、CuO 粉末	浓 HNO ₃	

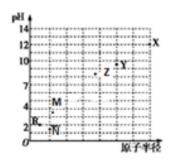

A. A

B. B

C. C


D. D

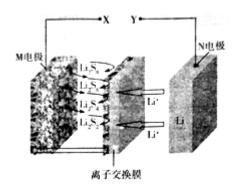
2、Weiss 利用光敏剂 QD 制备 2—环己基苯乙烯(c)的过程如图所示。下列有关说法正确的是



- A. a 不能使酸性 KMnO₄ 溶液褪色
- B. a、b、c都能发生加成、加聚反应
- C. c 中所有原子共平面
- D. b、c 为同系物
- 3、N_A代表阿伏加德罗常数的值。下列有关说法中正确的是
- A. 60 g 乙酸分子中所含共价键的数目为 8NA
- B. 标准状况下, 11.2LCHCl3 中含有的原子总数为 2.5N。
- C. 高温下, 1mol Fe 与足量水蒸气反应, 转移电子数的目为 3 Na
- D. 将 1molCl₂ 通入水中,所得溶液中 HClO、Cl·、ClO-粒子数之和为 2N_A
- 4、混合物 M 中可能含有 Al₂O₃、Fe₂O₃、Al、Cu

,为确定其组成,某同学设计如图所示分析方案。下列分析正确的是

- A. 已知 m₁>m₂,则混合物 M 中一定含有 A1₂O₃
- B. 生成蓝绿色溶液的离子方程式为 Cu+Fe3+=Cu2+ +Fe2+
- C. 固体 P 既可能是纯净物, 又可能是混合物
- D. 要确定混合物 M 中是否含有 A1, 可取 M 加入过量 NaOH 溶液
- 5、X、Y、Z、M、N、R 均是第三周期主族元素。25℃时,各元素最高价氧化物对应水化物的 pH 与原子半径的关系如图,其中 X、N、W、R 测定的是浓度均为 0.01 mol/L 溶液的 pH,Y、Z 测定的是其饱和溶液的 pH。下列说法正确的是

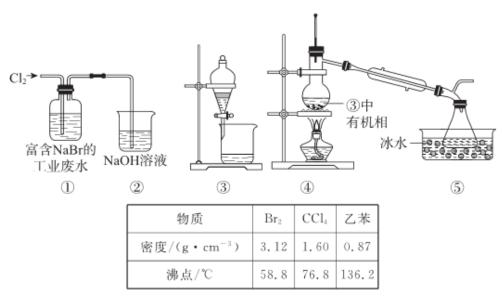


- A. R、N 分别与 X 形成二元化合物的水溶液均呈碱性
- B. N、Z、X 三种元素的最高价氧化物均不与水反应
- C. 单质与 H₂化合由易到难的顺序是: R、N、M
- D. 金属单质与冷水反应由易到难的顺序是: Y、X、Z
- 6、乙酸香兰酯是用于调配奶油、冰淇淋的食用香精,其合成反应的化学方程式如下:

下列叙述正确的是()

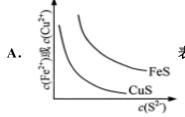
- A. 该反应不属于取代反应
- B. 乙酸香兰酯的分子式为 C10H8O4
- C. FeCl3溶液可用于区别香兰素与乙酸香兰酯
- D. 乙酸香兰酯在足量 NaOH 溶液中水解得到乙酸和香兰素
- 7、用 NA表示阿伏加德罗常数的值,下列叙述中正确的是
- A. 1 mol 甲基(-CH₃)所含的电子数为 10N_A
- B. 常温常压下,1 mol 分子式为 C_2H_6O 的有机物中,含有 C-O 键的数目为 N_A
- C.~14g 由乙烯和环丙烷(\bigcirc)组成的混合气体中,含有的原子总数为 $3N_A$
- D. 标准状况下,22.4L 四氯化碳中含有共用电子对的数目为 $4N_A$
- 8、下列反应的离子方程式正确的是()
- A. 用氯化铁溶液腐蚀铜板: Cu+2Fe³⁺=Cu²⁺+2Fe²⁺
- B. 向 AgCl 悬浊液中滴加 KI 溶液: Ag++I=AgI↓
- C. 向明矾溶液中滴加硫化钠溶液: 2Al3++3S2-=Al2S3↓
- D. 向 NaHCO₃溶液中滴加少量 Ca(OH)₂溶液: Ca²⁺+OH-+HCO₃=CaCO₃↓+H₂O
- 9、新型夹心层石墨烯锂硫二次电池的工作原理可表示为 16Li+xS8 $\underbrace{\frac{\dot{\text{DR}}}{\hat{\text{DR}}}}$ 8Li2Sx,其放电时的工作原理如图所示,下

列有关该电池的说法正确的是

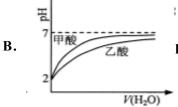


- A. 电池充电时 X 为电源负极
- B. 放电时,正极上可发生反应: 2Li+Li₂S₄+2e=2Li₂S₂
- C. 充电时, 没生成 1mo1S₈转移 0.2mo1 电子
- D. 离子交换膜只能通过阳离子,并防止电子通过
- 10、镁、铝都是较活泼的金属,下列描述中正确的是
- A. 高温下, 镁、铝在空气中都有抗腐蚀性
- B. 镁、铝都能跟稀盐酸、稀硫酸、强碱反应

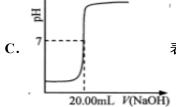
- C. 镁在点燃条件下可以与二氧化碳反应,铝在一定条件下可以与氧化铁发生氧化还原反应
- D. 铝热剂是镁条、铝粉和氧化铁的混合物
- 11、短周期元素 A、B、C、D 的原子序数依次增大,B与 C 的简单离子具有相同的电子层结构,D 的最高正价与最低负价代数和为 6。工业上采用在二氧化钛与 A 的单质混合物中通入 D 的单质,高温下反应得到化合物 X 和一种常见的可燃性气体 Y (化学式为 AB),X 与金属单质 C 反应制得单质钛。下列说法不正确的是
- A. 简单离子半径: D>B>C
- B. 氧化物的水化物酸性: D>A
- C. X 与单质 C 不能在空气的氛围中反应制得单质钛
- D. B 与 D 组成的某化合物可用于饮用水消毒
- 12、某研究小组利用软锰矿(主要成分为 MnO₂, 另含有少量铁、铝、铜、镍等金属化合物)作脱硫剂,通过如下简化流程既脱除燃煤尾气中的 SO₂, 又制得电池材料 MnO₂(反应条件已省略)。下列说法不正确的是

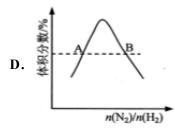


- A. 上述流程中多次涉及到过滤操作,实验室进行过滤操作时需用到的硅酸盐材质仪器有:玻璃棒、烧杯、漏斗
- B. 用 MnCO₃ 能除去溶液中的 Al³⁺和 Fe³⁺,其原因是 MnCO₃ 消耗了溶液中的酸,促进 Al³⁺和 Fe³⁺水解生成氢氧化物 沉淀
- C. 实验室用一定量的 NaOH 溶液和酚酞试液就可以准确测定燃煤尾气中的 SO2 含量
- D. MnSO₄溶液→MnO₂过程中,应控制溶液 pH 不能太小
- 13、实验小组从富含 NaBr 的工业废水中提取 Br₂ 的过程主要包括:氧化、萃取、分液、蒸馏等步骤。已知:可能用到的数据信息和装置如下。

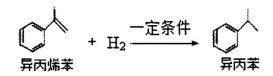


下列说法错误的是


- A. 实验时, ①的废水中出现红色
- B. ②的作用是吸收尾气, 防止空气污染
- C. 用③进行萃取时,选择 CCl₄比乙苯更合理
- D. ④中温度计水银球低于支管过多,导致 Br₂ 的产率低
- 14、图所示与对应叙述相符的是


表示一定温度下 FeS 和 CuS 的沉淀溶解平衡曲线,则 Ksp(FeS) < Ksp(CuS)

pH=2 的甲酸与乙酸溶液稀释时的 pH 变化曲线,则酸性:甲酸<乙酸


表示用 0.1000 mol·L-INaOH 溶液滴定 25.00 mL 盐酸的滴定曲线,则 c(HCl)=0.0800 mol·L-1

反应 $N_2(g)+3H_2(g)$ = $2NH_3(g)$ 平衡时 NH_3 体积分数随起始 $n(N_2)/n(H_2)$ 变化的曲线,则转

化率: $\alpha_A(H_2)=\alpha_B(H_2)$

15、异丙烯苯和异丙苯是重要的化工原料,二者存在如图转化关系:

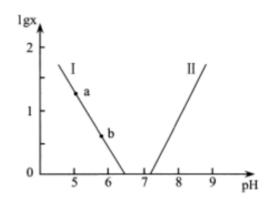
下列说法正确的是

- A. 异丙烯苯分子中所有碳原子一定共平面
- B. 异丙烯苯和乙苯是同系物

- C. 异丙苯与足量氢气完全加成所得产物的一氯代物有6种
- D. 0.05mol 异丙苯完全燃烧消耗氧气 13.44L
- 16、短周期主族元素 X、Y、Z、W 的原子序数依次增大, X 位于VIIA 族, Y 的原子核外最外层与次外层电子数之和为
- 9, Z 是地壳中含量最多的金属元素, W 与 X 同主族。下列说法错误的是()
- A. 原子半径: r(Y)>r(Z)>r(W)>r(X)
- B. 由 X、Y 组成的化合物是离子化合物
- C. X 的简单气态氢化物的热稳定性比 W 的强
- D. Y 的最高价氧化物对应水化物的碱性比 Z 的弱
- 17、室温下,下列关于电解质的说法中正确的是
- A. 中和等体积、等浓度的氨水和氢氧化钠溶液至 pH=7, 前者消耗的盐酸多
- B. 向 NaHS 溶液中加入适量 KOH 后: c(Na+)=c(H₂S)+c(HS-)+c(S²⁻)
- C. 将 amol·L-1 的醋酸与 0.01 mol·L-1 的氢氧化钠溶液等体积混合,溶液中: c(Na+)=c(CH₃COO-),则醋酸的电离常数 Ka=

$$\frac{2\times10^{-9}}{a-0.01}$$
 (用含 a 的代数式表示)

- D. 向 NH_4Cl 溶液中加入少量等浓度的稀盐酸,则 $\frac{c(NH_4^+)}{c(NH_3Cl)}$ 的值减小
- 18、实验室制备硝基苯时,经过配制混酸、硝化反应(50~60℃)、洗涤分离、干燥蒸馏等步骤,下列图示装置和操作能达到目的的是



19、人体血液存在 $\frac{H_2CO_3}{HCO_3}$ 、 $\frac{HPO_4^{2-}$ 等缓冲对。常温下,水溶液中各缓冲对的微粒浓度之比的对数值 Igx[x] 表示 $\frac{H_2CO_3}{HCO_3-}$ 可

 $\frac{HPO_4^{2-}}{H_2PO_4^{-}}$ 与 $_{pH}$ 的关系如图所示。已知碳酸 $_{pK_{a1}=6.4}$ 、磷酸 $_{pK_{a2}=7.2}(pK_{a}=-lgKa)$ 。则下列说法正确的是 $\frac{HPO_4^{2-}}{H_2PO_4^{-}}$

- A. 曲线 $_{\rm I}$ 表示 $_{\rm lg(\underline{c(HPO_4^{^2-})}_{c(H_2PO_4^{^-})})}$ 与 $_{\rm pH}$ 的变化关系
- B. $a \rightarrow b$ 的过程中,水的电离程度逐渐减小
- C. $\stackrel{\text{d}}{=}_{c(H_2CO_3)=c(HCO_3^-)}$ 时 $_{c(HPO_4^{-2-})=c(H_2PO_4^{-1})}$
- D. 当 $_{pH}$ 增大时, $_{\frac{c(HCO_3-)\cdot c(H_2PO_4^-)}{c(HPO_4^{2^-})}}$ 逐渐减小
- 20、下列化学用语或模型表示正确的是()
- A. H_2S 的电子式: H^+ [: S :] $^{2-}$ H^+
- B. S²⁻的结构示意图: (+18) 2 8 8
- C. CH₄分子的球棍模型:

- **D**. 质子数为 6,中子数为 8 的核素: ${}^{14}_{6}$ C
- 21、根据下列实验操作所得结论正确的是()

选项	实验操作	实验结论
A	向 2 支盛有 5mL 不同浓度 NaHSO3 溶液的试管中同时加入 2mL5%H2O2 溶液	浓度越大,反应速率越快
В	向 40mL 的沸水中滴入 5~6 滴 FeCl ₃ 饱和溶液,继续煮沸至液体呈红褐色,停止加热。当光束通过液体时,可观察到丁达尔效应	得到 Fe(OH)3 胶体

C	向 NaCl、NaI 的混合稀溶液中滴入浓 AgNO3 溶液, 有黄色沉淀生成	K_{sp} (AgCl) $>$ K_{sp} (AgI)
D	同温下用 pH 试纸分别测定浓度为 0.1mol/L NaClO 溶液、0.1mol/LCH ₃ COONa 溶液的 pH	比较 HCIO 和 CH ₃ COOH 的酸性强弱

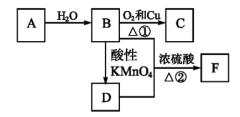
A A

B. B

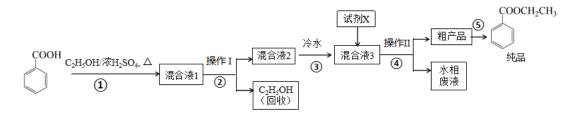
C. C

D. D

- 22、200℃时,11.6g CO₂和水蒸气的混合气体与过量的 Na₂O₂充分反应后,固体质量增加了 3.6g,再将反应后剩余固体 冷却后加入含有 Na+、HCO₃⁻、SO₃²⁻、CO₃²等离子的水溶液中,若溶液体积保持不变,则下列说法中正确的是
- A. 原混合气体的平均摩尔质量为 23.2g/mo1
- B. 混合气体与 Na_2O_2 反应过程中电子转移的物质的量为 0.25mol
- C. 溶液中 SO₃2-的物质的量浓度基本保持不变
- D. 溶液中 HCO₃-的物质的量浓度减小,CO₃²-的物质的量浓度增大,但是 HCO₃-和 CO₃²-的物质的量浓度之和基本保持不变二、非选择题(共 84 分)
- 23、(14 分) R·L·Claisen 双酯缩合反应的机理如下: 2RCH₂COOC₂H₅ → RCH₂CCHCOOC₂H₅ +C₂H₅OH, 利用该反应制备


化合物 K 的一种合成路线如图

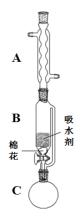
试回答下列问题:


任选):

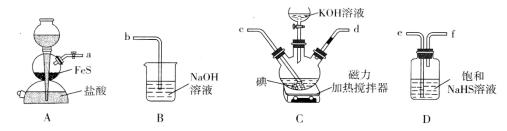
- (1) A 与氢气加成所得芳香烃的名称为_____; A→B 的反应类型是_____; D 中含氧官能团的名称是_____。
- (2) C 的结构简式为_____; F→G 的反应除生成 G 外,另生成的物质为_____。
- (3) H→K 反应的化学方程式为____。
- (4) 含有苯环结构的 B 的同分异构体有_____种(B 自身除外),其中核磁共振氢谱显示 3 组峰的结构简式为____ (任写一种即可)。
- (5) 乙酰乙酸乙酯(人人人)) 是一种重要的有机合成原料,写出由乙醇制备乙洗乙酸乙時的合成路线(无机试剂

24、(12 分)已知 A 为常见烃,是一种水果催熟剂;草莓、香蕉中因为含有 F 而具有芳香味。现以 A 为主要原料合成 F,其合成路线如下图所示。

- (1)A 的结构简式为____; D 中官能团名称为____。
- (2)写出反应①的化学方程式: 。
- (3)写出反应②的化学方程式: _____。
- 25、(12分) 苯甲酸乙酯是重要的精细化工试剂,常用于配制水果型食用香精。实验室制备流程如下:



试剂相关性质如下表:

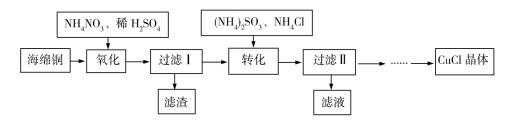

	苯甲酸	乙醇	苯甲酸乙酯
常温性状	白色针状晶体	无色液体	无色透明液体
沸点/℃	249.0	78.0	212.6
相对分子量	122	46	150
溶解性	微溶于水,易溶于乙醇、 乙醚等有机溶剂	与水任意比 互溶	难溶于冷水,微溶于热水, 易溶于乙醇和乙醚

回答下列问题:

- (1) 为提高原料苯甲酸的纯度,可采用的纯化方法为。
- (2) 步骤①的装置如图所示(加热和夹持装置已略去),将一小团棉花放入仪器 B 中靠近活塞孔处,将吸水剂(无水硫酸铜的乙醇饱和溶液)放入仪器 B 中,在仪器 C 中加入 12.2 g 纯化后的苯甲酸晶体,30 mL 无水乙醇(约 0.5 mol)和 3 mL 浓硫酸,加入沸石,加热至微沸,回流反应 1.5~2 h。仪器 A 的作用是_______;仪器 C 中反应液应采用_______方式加热。

- (3) 随着反应进行,反应体系中水分不断被有效分离,仪器 B 中吸水剂的现象为。
- (4) 反应结束后,对 C 中混合液进行分离提纯,操作 I 是 ,操作 II 所用的玻璃仪器除了烧杯外还有
- (5) 反应结束后,步骤③中将反应液倒入冷水的目的除了溶解乙醇外,还有_____;加入试剂 X 为_____(填写化学式)。
- (6) 最终得到产物纯品 12.0 g,实验产率为______%(保留三位有效数字)。
- 26、(10 分) KI 广泛应用于分析试剂、感光材料、制药和食品添加剂等。实验室制备 KI 的装置如下图所示。

已知: ① $3I_2+6KOH^{\frac{\Delta}{2}}5KI+KIO_3+3H_2O$ ② $3H_2S+KIO_3^{\frac{\Delta}{2}}KI+3S\downarrow+3H_2O$

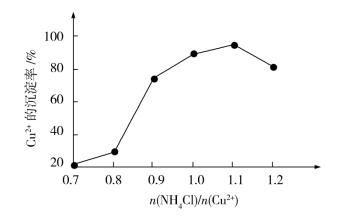

- (1)利用上图装置制备 KI, 其连接顺序为 (按气流方向, 用小写字母表示)。
- (2)检查装置 A 气密性的方法是______; 装置 D 的作用是_____。
- (3)制备 KI 时,向三颈瓶中逐滴滴入 KOH 溶液,加热并不断搅拌,观察到棕黄色溶液变为无色时,立即停止滴加 KOH 溶液,然后通入足量 H_2S 气体。
- ①反应结束后,向三颈瓶中加入硫酸溶液并加热,可以除去 KI 溶液中的 H₂S,原因是

②用肼(N₂H₄)替代 H₂S,制得产品纯度更高,理由是 (用化学方程式表示)。

(4)设计实验方案除去 KI 溶液中的稀硫酸 。

(5)若得到 1.6g 硫单质, 理论上制得 KI 的质量为 g。

27、(12 分) 实验室以海绵铜(主要成分为 Cu 和 CuO) 为原料制取 CuCl 的主要流程如图所示。



已知: ①CuCl 微溶于水,不溶于乙醇,可溶于氯离子浓度较大的溶液中。

②CuCl 露置于潮湿的空气中易被氧化。

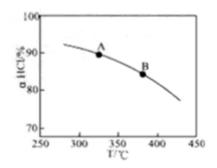
回答下列问题。

- (1) "氧化"时温度应控制在 60~70℃,原因是。
- (2) 写出"转化"过程中的离子方程式。
- (3)"过滤 Π "所得滤液经_____、___、过滤等操作获得(NH_4) $_2SO_4$ 晶体,可用作化学肥料。"过滤 Π "所得滤渣主要成分为 CuCl,用乙醇洗涤的优点是
- (4)氯化铵用量[$\frac{n(\mathrm{NH_4Cl})}{n(\mathrm{Cu}^{2+})}$]与 Cu^{2+} 沉淀率的关系如图所示。随着氯化铵用量的增多 Cu^{2+} 沉淀率增加,但当氯化铵用量增加到一定程度后 Cu^{2+} 的沉淀率减小,其原因是_____。

(5) 若 CuCl 产品中混有少量 CaSO₄,设计提纯 CuCl 的实验方案. _____。(实验中可选试剂: 0.1 mol·L⁻¹ 盐酸、10 mol·L⁻¹ 盐酸、蒸馏水、无水乙醇)

28、(14 分) 用 **O₂ 将 HCl 转化为 Cl₂,可提高效益,减少污染**,

(1) 传统上该转化通过如图所示的催化剂循环实现,


$$\begin{array}{c} HCl\left(g\right) \\ H_2Og \end{array} \begin{array}{c} CuO\left(s\right) \\ CuCl_2\left(s\right) \\ \end{array} \begin{array}{c} Cl_2\left(g\right) \\ O_2\left(g\right) \end{array}$$

其中,反应①为: 2HCl(g) +CuO(s) = $H_2O(g)$ +CuCl₂(g) ΔH_1

反应(2)生成 1molCl₂(g)的反应热为 ΔH_2 ,则总反应的热化学方程式为 (反应热用 ΔH_1 和 ΔH_2 表示)。

- (2) 新型 RuO2 催化剂对上述 HCI 转化为 Cl2 的总反应具有更好的催化活性,
- ①实验测得在一定压强下,总反应的 HCI 平衡转化率随温度变化的 a_{HCI} —T 曲线如图,则总反应的 ΔH 0 (填">"、

"="或"<");A、B 两点的平衡常数 K (A) 与 K (B) 中较大的是_____。

- ②在上述实验中若压缩体积使压强增大,画出相应 a_{HCI}—T 曲线的示意图,并简要说明理由
- ③下列措施中有利于提高 a_{HCI} 的有_____。
- A、增大n(HCl) B、增大n(O₂)
- C、使用更好的催化剂 D、移去 H₂O
- (3) 一定条件下测得反应过程中 n (Cl₂) 的数据如下:

t (min)	0	2.0	4.0	6.0	8.0
n (Cl ₂) /10 ⁻³ mol	0	1.8	3.7	5.4	7.2

计算 2.0~6.0min 内以 HCl 的物质的量变化表示的反应速率_____(以 mol·min-1 为单位,写出计算过程)。

- (4) Cl₂用途广泛,写出用 Cl₂制备漂白粉的化学方程式_____。
- 29、(10 分) 氯化铜可用于生产颜料、木材防腐剂等. 用粗铜(含杂质 Fe) 经过系列步骤可制备氯化铜晶体(CuCl₂•2H₂O). 完成下列填空:
- (1) 实验室用浓盐酸和二氧化锰共热来制备 Cl₂,写出该反应的离子方程式 .
- (2) 加入试剂将 $CuCl_2$ 和 $FeCl_3$ 的混合溶液 pH 调至 $4\sim5$,过滤得到纯净的 $CuCl_2$ 溶液,应加入的试剂是__ (填字母编号)
- a CuO b NaOH c Cu₂ (OH) ₂CO₃ d Cu
- (3) CuCl₂溶液通过蒸发、结晶可得到 CuCl₂•2H₂O.
- ①蒸发过程中,加入盐酸的目的是 .
- ②蒸发过程中,观察到溶液颜色由蓝色变为绿色.

上述反应的化学平衡常数表达式是_____. 欲使溶液由绿色变成蓝色的措施是: a_____; b_____.

(4) 由 CuSO₄溶液蒸发结晶得到 CuSO₄•5H₂O 的过程中不用加入硫酸,其原因是_____(用勒夏特列原理解释).

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/908117071056007002