第 九 振 振 动 一 横跨物理学所有领域

- 物理量在中心值附近作周期性变化 机械振动 位置或位移
- 1. 机械振动 位置或位移

特征 < 运动学— 周期性 动力学— 恢复力

形态 〈 轨迹 — 直线或曲线

形式 — 平动(质点) 或转动(刚体)

2. 非机械振动 电磁振荡、交流电...... 以上具有相似物理规律和研究方法

二. 最基本的振动 —— 简谐运动

简谐运动 <u>叠加</u> 复杂振动 分解

理想模型 — 维平动 — 弹簧振子 理想模型 — 一维转动 — 复摆(含单摆)

9-1 简谐运动 振幅 周期与频率 相位

一. 简谐运动

弹簧振子(一维平动 集中质量+弹性系统)

以平衡位置为原点、建立图示坐标系

偏离x

$$\sum F = F = -kx$$

动力学方程

k: 劲度系数、一般为振动常数

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{k}{m}x = -\omega^2 x$$

运动微分方程

ω:角频率

$$\omega^2 = \frac{k}{m}$$
 — 系统属性

$$x = A\cos(\omega t + \varphi)$$

运动方程

 $A \cdot \varphi$: 积分常数 — 初始条件

等价判别式

a. x — 平衡位置 量度

b. k、 ω — 固有性质 与初始条件无关 A、 φ — 初始条件 与固有性质无关

C

$$x = A\cos(\omega t + \varphi)$$

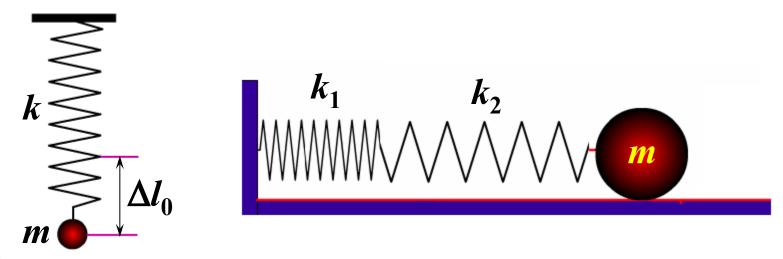
$$v = \frac{dx}{dt} = -\underline{A}\omega\sin(\omega t + \varphi)$$

$$a = \frac{d^2x}{dt^2} = -\underline{A}\omega^2\cos(\omega t + \varphi)$$
周期性函数

d. 推广 — 角谐振动(θ < 5° (9 − 3)

[例] 证明下列振动仍为简谐振动,并求固有量(k, ω)(1) 将弹簧振子竖直悬挂,已知平衡时弹簧伸长量为 Δl_0

(2) 如图所示,两弹簧串联,水平面光滑



讨论:

动力学分析 — 判断振动性质,求固有量 (动和静)平衡位置,偏离量 $x(\theta)$ 、力(矩)分析...

二. 简谐运动的运动学描述

1.振幅 A 最大位移 $A = |x_{\text{max}}|$

表征能量

2.周期与频率

$$x = A\cos(\omega t + \varphi) = A\cos[\omega(t+T) + \varphi] = A\cos(\omega t + \varphi + 2\pi)$$

比较
$$\omega T = 2\pi$$

$$\mathbb{RP} \quad \omega = \frac{2\pi}{T} = 2\pi v$$

 $A = \begin{bmatrix} x \\ 0 \\ -A \end{bmatrix}$

单位时间,全振动次数的2π倍

 ω 、T、 ν — 固有量,取决振动系统动力学特征

弹簧振子固有周期
$$T=2\pi\sqrt{\frac{n}{k}}$$

3. 相位

$$x = A \cdot v = 0$$
 $\omega t + \varphi = \pm 2k\pi$ $k = 0,1,2,...$

$$x = 0, v < 0$$

$$\omega t + \varphi = \frac{\pi}{2} \pm 2k\pi$$

$$x = -A$$
, $v = 0$ $\omega t + \varphi = \pi \pm 2k\pi$

$$x = 0, v > 0 \qquad \omega t + \varphi = \frac{3\pi}{2} \pm 2k\pi$$

$$(\mathfrak{Z} - \frac{\pi}{2})$$

如 t=0 则 φ — 初始状态

一般取k=0 描述

 $\pm 2k\pi$ —重复性

4. 常数 $A \setminus \varphi$ 的确定(解析法)

$$t = 0 \begin{cases} x_0 = A\cos\varphi \\ v_0 = -A\omega\sin\varphi \end{cases}$$

$$\begin{cases} A = \sqrt{x_0^2 + (\frac{v_0}{\omega})^2} \\ \varphi = \arctan(\frac{-v_0}{\omega x_0}) & - \text{ 任意角 (4个象限)} \end{cases}$$

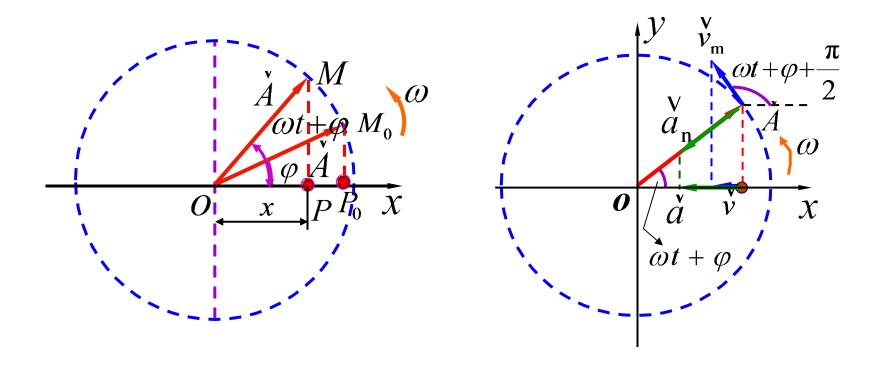
或
$$\varphi = \arccos \frac{x_0}{A}$$
 再结合 v_0 (>0、=0、<0)判断

9-2 旋转矢量

一. 简谐运动与匀速圆周运动

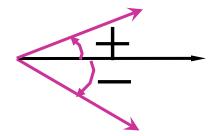
如图所示 旋转矢量 Å

$$t = 0 (M_0, P_0) \longrightarrow t (M, P)$$



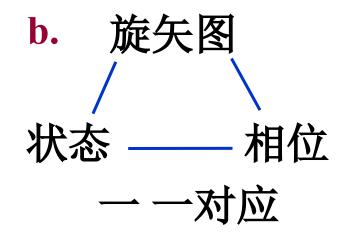
	矢端M	投影点P	关系	
运动性质	匀速率 圆周运动	简谐振动	合与分	
w	角速度(逆	角频率	数值相等	
$(\omega t + \varphi)$	t 时角位置	相位	同上	
$oldsymbol{arphi}$	t=0 角位置	初相位	同上	\mathcal{Y} \mathcal{V}_{m} π
				$ \begin{array}{c cccc} & \omega t + \varphi + \frac{\pi}{2} \\ & M & M \\ \hline & A & \omega \\ & A & V & P & X \\ & \omega t + \varphi \end{array} $
				10.

a. 规定



一般:

I 、II 、III 象限 正角, Ⅳ象限 负角

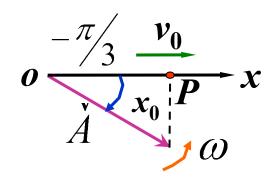


二. 旋转矢量法

1. 表示谐振动 (三要素)

$$x = A\cos(\omega t - \frac{\pi}{3})$$

2. 描绘x —t 曲线



3. 确定初相位 φ (或相位)(几何法)

讨论:如振子P,t=0 时处于下状态,求 φ

(2
$$x_0 = -\frac{A}{2}$$
 $v_0 > 0$ y_0 φ_1 $\varphi_2 = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$

4. 相位差 (同频率)

— 两振动"步调"

相位差

$$\Delta \varphi = (\omega t + \varphi_2) - (\omega t + \varphi_1) = \varphi_2 - \varphi_1$$
 (初相差)

规定 $|\Delta \varphi| \le \pi$ 逆时针在前为超前

对(a)图
$$x_2$$
超前 x_1 $(\varphi_2 - \varphi_1) \leq \pi$

(b)图 x_1 超前 x_2 $\pi/2$ 或 x_2 滯后 x_1

 \mathbb{A} 图(b)

12

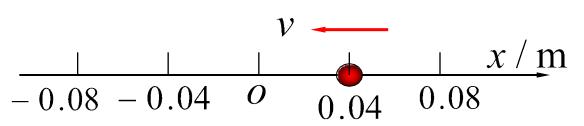
"步调一致" K = 0,1,2,L反相"步调相反" $=0, \varphi_2=\pi$ $\varphi_1 = \varphi_2 = 0$ **5.** Δt 或ω 如振子由初始状态 $(x_0 = -A/2, v_0 < 0)$ 回到平衡位置(第一次) 由旋矢图知 $\omega \Delta t = \alpha = \frac{\pi}{3} + \frac{\pi}{2} = \frac{5\pi}{6}$

6. 谐振动合成(9-5)

自此 ω 与 Δt 可互求

三. 谐振动的运动学分析

- 1. 已知运动方程→一系列物理量
- (1) t=1.0 s时,物体所处的位置和所受的力;
- (2) 由起始位置运动到 x = -0.04m处所需要的 短时间.



 $m = 0.01 \,\mathrm{kg}, A = 0.08 \,\mathrm{m}, T = 4 \,\mathrm{s}, t = 0.04 \,m, v_0 < 0$

求(1)
$$t = 1.0 \text{ s}, x, F$$
 (2) $x = 0.04 \text{ m}$ 到-0.04 m最短时

a. 先求运动方程(三要素),其中 φ 为关键

 $\mathbf{b}. \varphi \mathbf{1} \Delta t$ 求解 \mathbf{e} 解析法 如 $\mathbf{\varphi}$:

解析法 由
$$x_0 = 0.04 = 0.08\cos\varphi$$
 —— $\varphi = \pm \frac{\pi}{3}$

 $v_0 = -A\omega\sin\varphi < 0 \rightarrow \sin\varphi > 0$ 旋矢法 由旋矢图 判断 $\varphi = \frac{\pi}{3}$ χ/m 知 $\varphi = \frac{\pi}{3}$ [例2] 一简谐运动的x - t曲线,如图所示,求:

- (1) 初相 φ ; (2) 求运动方程,并用旋矢表示之;
- (3) 第一次到达 $x = \frac{\sqrt{2}}{2}A$ 处的速度和加速度。

分析: a. 简便路径: 用旋矢法求 φ 和 ω ,并结合相位法求第三问

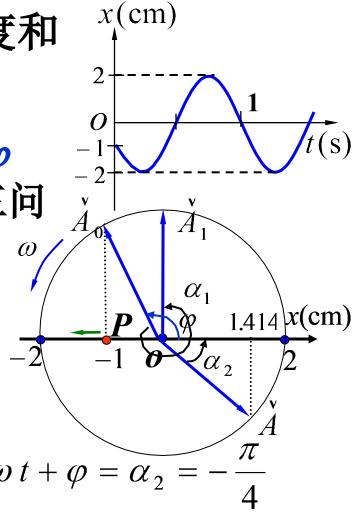
b. 旋矢图

由图知
$$\varphi = \frac{2\pi}{3}$$

$$\alpha_1 = \frac{11\pi}{6} = \omega \Delta t = \omega$$

第一次到达次
$$x = \frac{\sqrt{2}}{2}A$$
 处相位 $\omega t + \varphi = \alpha_2 = -\frac{\pi}{4}$

讨论:比较:解析法、旋矢法、相位法



9-3 单摆和复摆

-. 复摆(物理摆)—一维角谐振动模型 如图 偏离平衡位置θ

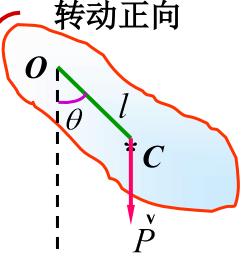
$$M = -mgl\sin\theta$$
 $d = -mgl\sin\theta = \theta$

有
$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -(\frac{mgl}{J})\theta \qquad (\omega^2 = \frac{mgl}{J})$$

 $M = -(mgl)\theta$ (K = mgl)

$$\theta = \theta_{m} \cos(\omega t + \varphi)$$
 运动方程 (准谐振动)

二. 单摆(数学摆) — 复摆一个特例 $J = ml^2 \quad T = 2\pi \sqrt{\frac{l}{\sigma}}$



(C点为质心)

D 17. [例1]一半径为 r 的均质球,可沿半径为 R 的固定大球壳的内表面作纯滚动(如图)试求圆球绕平衡位置作微小运动的动力学方程及其周期.0

分析: 偏离θ 力(矩)分析

$$-(mg \sin \theta + F) = ma_{t}$$

$$Fr = \frac{2}{5}mr^{2}\alpha$$

$$a_{t} = (R - r)\frac{d^{2}\theta}{dt^{2}}$$

$$a_{t} = r\alpha$$

$$d^{2}\theta = -\omega^{2}\theta$$

$$\sin \theta \approx \theta$$

$$T = 2\pi \sqrt{\frac{7(R - r)l}{5\sigma}}$$

18.

[例2] 细杆(m,l) 竖直时,水平轻质弹簧(k)处于自然状态,求细杆作小幅摆动时的周期T。

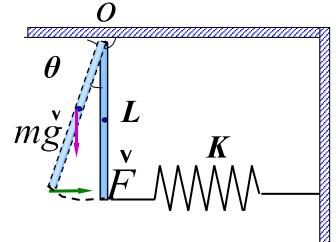
分析: 偏离 θ

对
$$o: -[mg \frac{l}{2} \sin \theta + kl \sin \theta (l \cos \theta)] = \frac{1}{3} ml^2 \frac{d^2 \theta}{dt^2}$$

 θ 很小时, $\sin \theta \approx \theta \cos \theta \approx 1$

有
$$-(mg\frac{l}{2}+kl^2)\theta = \frac{1}{3}ml^2\frac{d^2\theta}{dt^2}$$
 mg/k K

$$T = 2\pi \sqrt{\frac{2ml}{3(mg+2kl)}}$$



讨论: 动力学分析步骤?

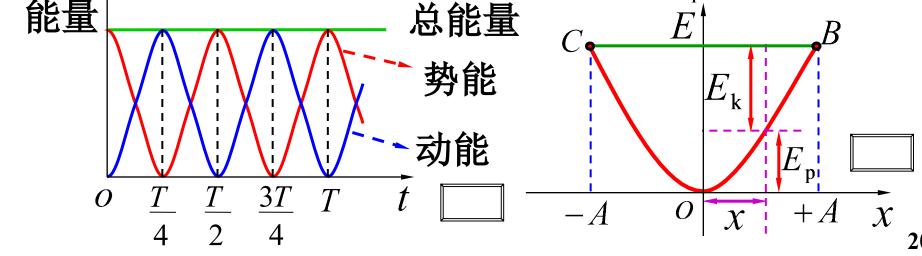
9-4 简谐运动的能量

以弹簧振子为例

$$t$$
:系统能量 $E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}m\omega^{2}A^{2}\sin^{2}(\omega t + \varphi)$

$$E_{\rm P} = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 A^2\cos^2(\omega t + \varphi)$$

$$E = E_{k} + E_{p} = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = \frac{1}{2}kA^{2} = C$$
 节恒



讨论:

能量法 —— 判断广义简谐运动

简谐运动——能量特征——能量守恒 以弹簧振子为例:

振子偏离平衡位置x时

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = C$$

两边对t求导

$$\frac{d}{dt}(\frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}) = 0 \implies \frac{d^{2}x}{dt^{2}} + \frac{k}{m}x = 0$$

[例] 求图示系统的振动频率 ν . 设轻绳与定滑轮间无相对滑动. k

分析

a. 寻找平衡位置,建立图示坐标系 $mg = kx_0$

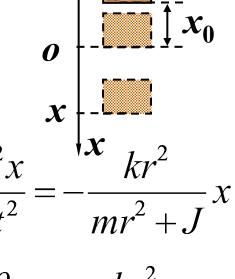
偏离x平动与转动隔离

对m:
$$mg - F_T = ma$$

对*J*:
$$F_T r - k(x_0 + x) = J\alpha$$

$$m$$
与 $J: a = ra$

$$\omega^2 = \frac{kr^2}{mr^2 + J}$$
 $v = \frac{\omega}{2\pi}$ ——系统固有性质



22.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/917130140046006056