## 绝密★启用前

## 试卷类型: A

## 南京市 2025 届高三学业水平调研考试 数学

本试卷共 4 页, 19 小题, 满分 150 分. 考试用时 120 分钟. 注意事项:

- 1. 答卷前, 请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填 写在试题卷和答题卡上. 用 2B 铅笔将试卷类型 (A) 填涂在答题卡相应位置 上. 将条形码横贴在答题卡右上角"条形码粘贴处".
- 2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上将对应题目选项 的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能 答在试卷上.
- 3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案; 不准使用铅笔和涂改液. 不按以上要求作答的答案无效.
- 4. 考生必须保证答题卡的整洁. 考试结束后, 将试券和答题卡一并交回.
- 一、选择题: 本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选 项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
- 1. 已知集合  $A = \{(x,y)|x^2 + y^2 = 4\}$ ,  $B = \{(x,y)|y = 2\cos x\}$ , 则  $A \cap B$  的真子集个数为 ( )
- A. 5个
- B. 6个
- C. 7个 D. 8个
- 2. 在复平面内,复数 z 对应的点 Z在第二象限,则复数  $\frac{z}{4}$  对应的点  $Z_1$  所在象限为 ( )

- B. 第二象限 C. 第三象限
- 3. 某考生参加某高校的综合评价招生并成功通过了初试,在面试阶段中,8 位老师根据考 生表现给出得分,分数由低到高依次为,76,a,b,80,80,81,84,85,若这组数据的下 四分位数为77,则该名考生的面试平均得分为()
- A. 79
- C. 81
- D. 82

4. "
$$\tan^2 \alpha = \frac{1}{4}$$
"是" $\frac{\tan 3\alpha}{\tan \alpha} = 11$ "的 ( )

条件

5. 若单位向量 $\stackrel{r}{a},\stackrel{l}{b}$ 满足 $\stackrel{r}{a},\stackrel{l}{b}$ =120°, 向量 $\stackrel{l}{c}$ 满足 $\stackrel{r}{c}-\stackrel{r}{a}$ ) $\perp \stackrel{r}{c}-\stackrel{l}{b}$ , 则 $\stackrel{l}{a}\cdot\stackrel{l}{c}+\stackrel{l}{b}\cdot\stackrel{l}{c}$ 的最小值为 ( )

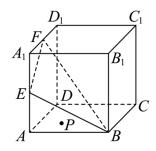
- A.  $\frac{\sqrt{3}-1}{4}$  B.  $\frac{1-\sqrt{3}}{4}$  C.  $\frac{\sqrt{3}-1}{2}$  D.  $\frac{1-\sqrt{3}}{2}$

6. 设数列 $\{a_n\}$ 的前n项和为 $S_n$ ,  $a_1 = \frac{1}{2}$ ,  $a_{n+1} = \frac{2a_n}{a_n+1}$ , 若 $S_{2024} \in (k,k+1)$ , 则正整数k的值 为()

- A. 2024
- B. 2023
- C. 2022
- D. 2021

7. 已知双曲线 $C: x^2 - \frac{y^2}{L^2} = 1$ ,在双曲线C上任意一点P处作双曲线C的切线

 $(x_p>0,y_p>0)$ , 交 C在第一、四象限的渐近线分别于 A、B 两点. 当  $S_{\triangle OPA}=2$  时,该双 曲线的离心率为( )


- A.  $\sqrt{17}$  B.  $3\sqrt{2}$  C.  $\sqrt{19}$  D.  $2\sqrt{5}$

8. 在VABC中,A < B < C且  $\tan A$ ,  $\tan B$ ,  $\tan C$  均为整数,D为 AC 中点,则  $\frac{BC}{RD}$  的值为

- A.  $\frac{1}{2}$
- B.  $\frac{\sqrt{2}}{2}$  C.  $\frac{\sqrt{3}}{2}$  D. 1

三、选择题: 本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.

9. 如图,棱长为 2 的正方体  $ABCD - A_iB_iC_iD_i$ 中,E,F 分别是  $AA_i$ ,  $A_iD_i$  的中点,点 P 为底 面 ABCD 内(包括边界)的动点,则下列说法正确的是()



A. 过B, E, F 三点的平面截正方体所得截面图形是梯形

B. 存在点 P,使得  $C_1P \perp$  平面 BEF

- C. 若点 P 到直线 BB, 与到直线 AD 的距离相等,则点 P 的轨迹为抛物线的一部分
- D. 若直线  $D_1P$  与平面 BEF 无公共点,则点 P 的轨迹长度为  $\frac{\sqrt{5}}{2}$
- 10. 芯片时常制造在半导体晶元表面上. 某企业使用新技术对某款芯片制造工艺进行改进. 部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验. 记 A 表示事件"某芯片通过智能检测系统筛选",B 表示事件"某芯片经人工抽检后合格". 改进生产工艺后,这款芯片的某项质量指标 $\xi$  服从正态分布  $N(5.40,0.05^2)$ ,现从中随机抽取 M 个,这 M 个芯片中恰有 M 个的质量指标  $\xi$  位于区间 (5.35,5.55),则下列说法正确的是(一)(参考数据:

$$P(\mu-\sigma < \xi \le \mu-\sigma) \approx 0.6826$$
,  $P(\mu-3\sigma < \xi \le \mu+3\sigma) \approx 0.9974$ )

A. 
$$P(B|A) > P(B)$$

B. 
$$P(A|B) > P(A|\overline{B})$$

C. 
$$P(5.35 < \xi < 5.55) \approx 0.84$$

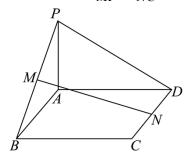
D. P(m=45) 取得最大值时, M 的估计值为

54

11. 麦克斯韦妖(Maxwell'sdemon),是在物理学中假想的妖,能探测并控制单个分子的运动,是第二类永动机的一个范例. 而直到信息熵的发现后才推翻了麦克斯韦妖理论. 设随机变量x 所有取值为 1, 2, …, n,且  $P(x=i)=P_i>0(i=1,2,\mathsf{L}_-,n)$ ,  $\sum_{i=1}^n P_i=1$ ,定义 X 信息熵  $H(x)=-\sum_{i=1}^n P_i\log_2 P_i$ ,则下列说法正确的是()

- B. 当n=2时,若 $P_i \in \left(0,\frac{1}{2}\right)$ ,则H(x)与 $P_1$ 正相关
- C. 若 $P_1 = P_2 = \frac{1}{2^{n-1}}, P_{k+1} = 2P_k (k \ge 2, k \in \mathbf{N})$ ,则 $H(x) = 2 \frac{n}{2^{n-1}}$

- 三、填空题: 本大题共3小题,每小题5分,共15分.
- 12. 在正四棱台  $ABCD A_1B_1C_1D_1$ 中, AB = 4 ,  $A_1B_1 = 2$  ,  $AA_1 = 2\sqrt{2}$  ,则该棱台的体积为\_\_\_\_\_\_.
- 13. 已知抛物线  $v^2 = 4x$  与抛物线  $x^2 = 4v$  在第一象限的交点为点 A,抛物线  $v^2 = 4x$  与直线


 $x-ey-e^2=0$  (e 为自然常数)在第四象限的交点为点 B,点 O 为坐标原点,则  $\triangle OAB$  的面积为\_\_\_\_\_.

14. 已知函数 
$$f(x)$$
满足  $f(-1-x)+f(x)=-7$ ,且  $f\left[f(x)+\frac{1}{f(x)+3}-x-\frac{1}{x}+2\right]=-4$ ,则  $f(2024)=$  .

四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.

15. 已知函数 
$$f(x) = -\frac{1}{3}x^3 + bx^2 + cx + bc$$
.

- (1)若函数 f(x) 在 x = 1 处有极值  $-\frac{4}{3}$  , 求 b,c 的值;
- (2)若函数 g(x) = f(x) c(x+b) 2在  $x \in [4,+\infty)$  内单调递减,求 b 的取值范围.
- 16. 4月19日是中国传统二十四节气之一的"谷雨",联合国将这天定为"联合国中文日",以纪念"中华文字始祖"仓颉[jié]造字的贡献,旨在庆祝多种语言以及文化多样性,促进联合国六种官方语言平等使用。某大学面向在校留学生举办中文知识竞赛,每位留学生随机抽取问题并依次作答,其中每个问题的回答相互独立。若答对一题记 2 分,答错一题记 1 分,已知甲留学生答对每个问题的概率为 $\frac{3}{4}$ ,答错的概率为 $\frac{3}{4}$ .
- (1)甲留学生随机抽取3题,记总得分为X,求X的分布列与数学期望;
- (2) (i) 若甲留学生随机抽取m 道题,记总得分恰为2m 分的概率为 $P_m$ ,求数列 $\{P_m\}$  的前m 项和:
- (ii) 记甲留学生已答过的题累计得分恰为n分的概率为 $Q_n$ , 求数列 $\{Q_n\}$ 的通项公式.
- 17. 如图,已知四边形 ABCD 是矩形, PA 上平面 ABCD,且 PA = 2, M、N 是线段 PB、DC 上的点,满足  $\frac{BM}{MP} = \frac{DN}{NC} = \lambda$ .



(1)若 $\lambda$ =1,求证:直线MN//平面PDA;

- (2)是否存在实数  $\lambda$  ,使直线 MN 同时垂直于直线 PB ,直线 DC ?如果有请求出  $\lambda$  的值,否则请说明理由;
- (3)若 $\lambda=1$ , 求直线MN与直线PD所成最大角的余弦值.
- 18. 已知双曲线  $C_1: x^2 \frac{y^2}{2} = 1$  与曲线  $C_2: 2(x-m)^2 + (y-n)^2 = 6$  有 4 个交点 A, B, C, D (按逆时针排列)
- (1)当m=n=0时,判断四边形ABCD的形状;
- (2)设O为坐标原点,证明:  $|OA|^2 + |OB|^2 + |OC|^2 + |OD|^2$ 为定值;
- (3)求四边形 ABCD 面积的最大值.

附: 若方程  $x^4 + ax^3 + bx^2 + cx + d = 0$ 有 4 个实根  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ , 则  $x_1 + x_2 + x_3 + x_4 = -a$ ,  $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = b$ .

- 19. 称  $I \subseteq \mathbb{Z}$  是  $\mathbb{Z}$  的一个向往集合,当且仅当其满足如下两条性质: (1) 任意  $a,b \in I$ ,  $a+b \in I$ ; (2) 任意  $a \in I$  和  $c \in \mathbb{Z}$ ,有  $ca \in I$ .任取  $a_1, a_2, \bot$ , $a_n \in \mathbb{Z}$ ,称包含  $a_1, a_2, \bot$ , $a_n$  的最小向往集合称为  $a_1, a_2, \bot$ , $a_n$  的生成向往集合,记为  $\left(a_1, a_2, \bot, a_n\right)$ .
- (1)求满足(6,8)=(x)的正整数x的值;
- (2)对两个向往集合 $I_1,I_2$ , 定义集合

$$S\left(I_{1},I_{2}\right) = \left\{a+b | \ a \in I_{1}, b \in I_{2}\right\}, P\left(I_{1},I_{2}\right) = \left\{a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right. \\ \left. + a_{n}b_{n} | \ a_{1},a_{2},\mathsf{L} \right. \\ \left. , a_{n} \in I_{1}, b_{1}, b_{2},\mathsf{L} \right. \\ \left. , b_{n} \in I_{2}, n = 1,2,\mathsf{L} \right. \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{1} + a_{2}b_{2} + \mathsf{L} \right) + \left(a_{1}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) \right] \\ \left. + \left(a_{1}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) \\ \left. + \left(a_{1}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right) \right] \\ \left. + \left(a_{1}b_{2} + \mathsf{L} \right) + \left(a_{2}b_{2} + \mathsf{L} \right)$$

- (i) 证明: P((4,6),(3)) 仍然是向往集合,并求正整数x,满足P((4,6),(3))=(x);
- (ii) 证明: 如果 $S(I_1,I_2)=Z$ ,则 $I_1 \cap I_2=P(I_1,I_2)$ .

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/926143122004010221