水工钢结构课程设计

1 设计任务书

一、题目

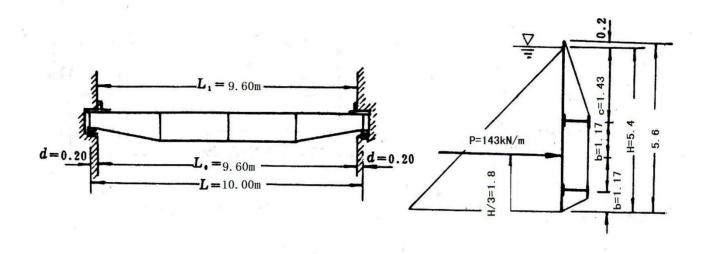
平面钢闸门设计

二、设计资料

闸门形式:溢洪道露顶式平面钢闸门;

孔口净宽: 9.60m;

设计水头: 5.40m;


结构材料: Q235;

焊条: E43;

止水橡皮:侧止水用P形橡皮;

行走支承: 采用胶木滑道, 压合胶木为MCS-2;

混凝土强度等级: C20

例图 7.1 闸门主要尺寸图 (单位: m)

三、设计内容

根据给定的原始资料,需完成以下设计内容:

- 1. 了解任务,熟悉资料,确定闸门结构的形式并对其进行布置;
- 2. 面板设计
- 3. 水平次梁、顶梁和底梁的设计
- 4. 主梁设计
- 5. 横隔板设计
- 6. 纵向联结系设计

7. 边梁设计等。

四、课程设计的要求

1、总体要求

集中布置,明确要求,提倡讨论,独立完成,严禁抄袭,拷贝现象。

- 2、成果要求
- (1) 说明书一份,内容包括:工程概况及基本资料;闸门结构布置、面板设计、水平次梁、顶梁、低梁设计、施工图绘制等。说明书应文字通顺,字迹工整,论据充足。
 - (2) 设计图纸 1~2 张

2 设计指导书

一、目的要求

《水工钢结构》是水利水电工程专业的重要专业课,为了加强学生对基本理论的理解和《水工钢结构设计》规范条文的应用,培养学生独立分析问题和解决问题的能力,必须在讲完有关课程内容后,安排适当时间的课程设计,以提高学生的综合运用能力。

二、 闸门结构的形式及布置

- (1) 闸门尺寸的确定;
- (2) 主梁的形式;
- (3) 主梁的布置;
- (4) 梁格的布置及形式;
- (5) 联结系的布置及形式。

三、主要设计计算步骤

1、面板设计

- 1) 估算面板厚度;
- 2) 面板与梁格的连接计算;

2、水平次梁、顶梁和底梁的设计

- 1) 荷载与内力计算;
- 2) 截面选择;
- 3) 水平次梁的强度验算;
- 4) 底梁和顶梁设计

3. 主梁设计

- 1) 截面选择;
- 2) 截面改变;
- 3) 翼缘焊缝;
- 4) 腹板局部稳定验算;
- 5) 面板局部弯曲与主梁整体弯曲的折算应力验算。

4. 横隔板设计

- 1) 荷载和内力计算;
- 2) 横隔板截面选择和强度计算;

5. 纵向联结系设计

- 1) 荷载和内力计算;
- 2) 斜杆截面计算;
- 6. 边梁设计等。
- 7. 绘制施工图

露顶式平板刚闸门设计

1-1. 设计资料

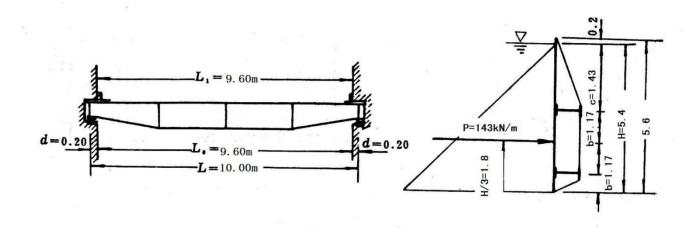
闸门形式: 溢洪道露顶式平板刚闸门;

孔口净宽: 9.6m;

设计水头: 5.4m;

结构材料: Q235 钢;

焊条: E43;


止水橡皮: 侧止水用P形橡皮;

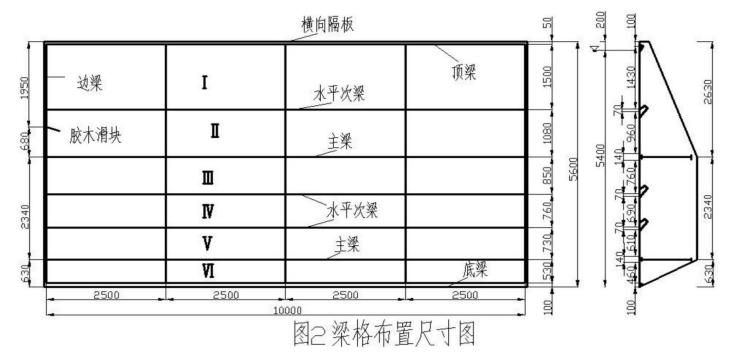
行走支撑: 采用胶木滑道, 压合胶木为MCS-2:

混凝土强度等级: C20;

1-2. 闸门结构的形式级布置

- (1) 闸门尺寸的确定(图 1)
 - 1) 闸门的高度: 考虑风浪所产生的水位超高为 0.2m, 故闸门高度 H=5.4+0.2=5.6m;
 - 2) 闸门的荷载跨度为两止水的间距; L₁=9.6m;
 - 3) 闸门的设计跨度: L=L0+2d=9.6+2x0.2=10m;

例图 7.1 闸门主要尺寸图 (单位: m)


- (2) 主梁的形式:主梁的形式根据水头的大小和跨度大小而定,本闸门属于中等跨度,为了方便制造和维护,决定采用实腹式组合梁。
- (3) 主梁的布置:根据闸门的高宽比,决定采用双主梁。为了方便两个主梁设计水位是所受的水压力相等。两个主梁的位置对称与水压力的作用线 Y=H/3=1.8m。并且要求下悬梁 $a \le 0.2H$ 且 $a \ge 0.4m$,上悬梁才 $c \le 0.45H$,

今取 $a=0.63 \approx 0.12H=0.12x5.4=0.648$,

主梁间距 2b=2(Y-a)=2(1.8-0.63)=2.34m,

则 c=H-2b-a=5.4-2.34-0.63=2.34=0.45H=2.43m 所以,满足要求。

(4) 梁格的布置和形 1 式。梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并且被横隔板所支撑。水平次梁为连续梁,其间距应上疏下密,使得面板各区需要的厚度大致相等,梁格布置具体尺寸如图 2 所示

(5) 连接系的布置和形式。

1)横向连接系,根据主梁的跨度,决定布置 3 道横隔板,其间距为 2.5m。横隔板兼作竖直次梁。

- 2)纵向连接系,设计在两个主梁下翼缘的竖直平面内,采用斜杆式桁架。
- 3) 边梁与行走支撑,边梁采用单复式,行走支撑采用胶木滑道。

1-3. 面板设计

(1) 估计面板厚度,假定梁格布置尺寸如图 1 所示。面板厚度按式

$$t = a\sqrt{\frac{kp}{0.9 \times a \times [\sigma]}}$$
;

计算 当
$$b/a \le 3$$
 时, $a=1.5$,则 $t=a\sqrt{\frac{kp}{0.9\times1.5\times160}}=0.068\,a\sqrt{kp}$; 当 $b/a>3$ 时, $a=1.4$,则 $t=a\sqrt{\frac{kp}{0.9\times1.4\times160}}=0.07\,a\sqrt{kp}$;

现在列表进行计算

面板厚度的估算

区格	a (mm)	b (mm)	b/a	R	p (N/mm²)	\sqrt{kp}	t (mm)
I	1430	2490	1.51	0. 568	0.006	0.058	5. 64
II	960	2490	2. 59	0.5	0.019	0.097	6. 33
III	760	2490	1.89	0.5	0.028	0.118	6. 1
IV	690	2490	3. 23	0.5	0.036	0. 134	6. 47
V	610	2490	4.08	0. 5	0.043	0. 147	6. 28

VI	460	2490	5. 41	0.75	0.05	0. 194	6. 25

根据表的计算,选用面板厚度为t=8mm。

(2) 面板与梁格计算。面板局部挠曲是产生的垂直与焊缝长度的横向拉力 P 的计算。已知面壁

那厚度
$$=8$$
mm,并且取最大弯曲应力 $\sigma_{max} = [\sigma] = 160 / N_{mm^2}$;

$$p = 0.07t \sigma_{\text{max}} = 0.07 \times 8 \times 160 = 89.6 N / mm_{\text{s}}$$

面板与主梁连接焊缝方向单位长度内的剪力为

$$T = \frac{VS}{2I_0} = \frac{343200 \times 600 \times 8 \times 283}{2 \times 1364180000} = 171 N / mm ,$$

计算面板与主梁连接的焊缝厚度为

$$h_f = \frac{\sqrt{p^2 + T^2}}{0.7 \left[\tau^{\text{w}}\right]} = \frac{\sqrt{89 \cdot 6^2 + 171^2}}{0.7 \times 115} = 2.398 \approx 2.4 \text{ mm}$$
 面板与梁格

连接焊缝取其最小厚度 $h_f = 6 mm$,

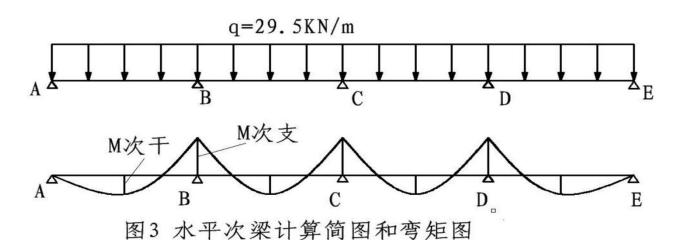
1-4 水平次梁,顶梁和底梁的设计

(1) 荷载与内力计算。水平次梁和顶梁都是支撑在横隔板上的连续梁,作用在他们上面的水平 压力计算。

$$q = p \frac{a_{\perp} + a_{\top}}{2},$$

列表计算后得 $\sum q = 144.81 KN/m$.

水平次梁,顶梁和底梁均布荷载的计算


梁号	水压强度 P(KN/m2)	梁间距(m)	<u>a + a F</u>	$q = p \frac{a_{\perp} + a_{\top}}{2}$	备注
1顶梁					
2	13. 2	1.5	1. 29	17. 03	顶梁荷载按下图计算
3 上主梁	23.8	1.08	0. 965	22. 97	$\frac{1.35 \times 13.2}{1.35} \times \frac{1.35}{1.35}$
4	32. 1	0.85	0.805	25. 84	$R = \frac{2}{1.5} = 2.67$
5	39. 6	0.76	0. 745	29. 5	13.2KN/m2
6 下主梁	47. 3	0.73	0. 63	29.8	1,35 R1 1,5 R2
7底 梁	53. 9	0.53	0. 365	19. 67	

根据表的计算,水平次梁计算荷载取 29.5kN/m,水平次梁为四跨连续梁,跨度为 2.5m,如下图所示,水平次梁弯曲时的边跨中弯矩为

$$\mathbf{M}_{\text{X}^{+}} = 0.077 q \mathbf{I}^{2} = 0.077 \times 29.5 \times 2.5^{2} = 14.2 \text{kN} \bullet \text{m},$$

支座 B 处的弯矩为

$$\mathbf{M}_{\text{tr}} = 0.107q \mathbf{l}^2 = 0.107 \times 29.5 \times 2.5^2 = 19.73kN \bullet m$$

(2)截面选择

$$W = \frac{M}{[\sigma]} = \frac{19.73 \times 10^{-6}}{160} = 123312 \text{ mm}^{-2}$$

考虑利用面板作为次梁截面的一部分,选择 $\begin{bmatrix} 16b \text{ } 有附录查表得到: \ A=2515mm^2 \ , \ W_x=11680mm^2 \ , \ I_x=mm^4 \ , \ b=65 \ , \ t_w=8.5 \ .$

面板参加次梁工作有效宽度: $B \le b_1 + 60t = 65 + 60 \times 8 = 545mm$,

$$B = ε1b$$
 (对跨间正弯矩段)

$$B = ε2b$$
 (对支撑负弯矩段)

按 5 号梁计算,设梁间距: $\mathbf{b} = \frac{1}{2}(b_1 + b_2) = \frac{1}{2}(730 + 760) = 745$ mm, 对于第一跨中正弯矩段取: $l_0 = 0.8l = 0.8 \times 2340 = 1872$ mm,

对于支座负弯矩段取: $l_0 = 0.4l = 0.4 \times 2340 = 936mm$ 根据 l_0 查表得到

对于
$$l_0/b = 1872/745 = 2.513$$
,得到 $\epsilon_1 = 0.781$,则B= $\epsilon_1 b = 0.781 \times 745 = 582mm$ 。

对于 l_0 b = 936 = 1.256 ,得到 $\epsilon_1 = 0.361$,则 $\mathbf{B} = \epsilon_1 b = 0.361 \times 745 = 269 mm$ 。

对第一跨中选用 B=545mm,则水平次梁组合截面面积为: $A=2515+545x8=6875mm^2$

组合截面形心到槽钢中心线的距离为:

$$e = \frac{545 \times 8 \times 84}{5910} = 53mm$$
,

跨中组合截面的惯性矩及截面模量为:

$$I_{\text{Mrth}} = +2515 \times 53^2 + 545 \times 8 \times 31^2 = (m;$$

$$W_{\min} = \frac{22065195}{133} = 165900 (mm^2) ,$$

对支座段选用 B=269mm,则组合截面面积为:

$$A = 2515 + 269 \times 8 = 4667 \ (mm^2),$$

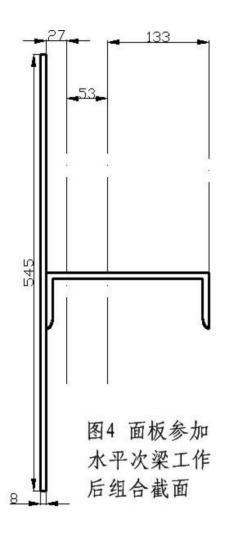
组合截面形心到槽钢中心线距离:

$$e = \frac{269 \times 8 \times 84}{4667} = 39(mm)$$

支座处组合截面惯性矩及截面模量为:

$$I_{x_R} = +2515 \times 39^2 + 269 \times 8 \times 45^2 = (mm^4),$$

$$W_{min} = \frac{17533115}{119} = 147337 (mm^2),$$


(3)水平次梁的强度验算。由支座 B 处支座弯矩最大,而截面模量最小,故只需验算支座 B 处截面的弯矩 强度。即

$$\sigma_{\chi} = \frac{M_{\chi_B}}{W_{\min}} = \frac{19.73 \times 10^6}{147337} = 133.9 (mm^2) < [\sigma] = 160 \frac{N}{mm}^2;$$

说明水平次梁选用[16b,满足要求。

轧成梁的剪应力一般很小, 可不必验算。

(4) 水平次梁的扰度验算。受均布荷载的等连续梁,最大挠度发生在边跨,由于水平次梁在 B 支座处截面的弯矩已经求出 $M_{_{YB}}=19.73kN\bullet m$,则边跨挠度可近似地计算为:

$$\frac{u}{l} = \frac{5}{384} \times \frac{ql^2}{EI_{\%}} - \frac{M_{\%B}l}{16EI_{\%}}$$

$$= \frac{5 \times 29.5 \times (2.34 \times 10^3)^3}{384 \times 2.06 \times 10^5 \times 22065195} - \frac{19.73 \times 10^6 \times 2.34 \times 10^3}{16 \times 2.06 \times 10^5 \times 22065195},$$

$$= 1.08 \times 10^{-3} - 6.35 \times 10^{-4} = 0.000455 \le \left[\frac{u}{l}\right] = \frac{1}{250} = 0.004$$

故水平次梁选择 [16 b , 满足强度和刚度的要求。

(5) 顶梁和底梁。顶梁荷载较小,但考虑水面漂浮物撞击影响,必须加强顶梁刚度,所以也 $_{
m XH}$ 16b ,底梁也 $_{
m XH}$ 16b 。

1-5 主梁设计

- (1) 设计资料
- 1) 主梁跨度(图 5); 净跨(孔口 宽度) L0=9.6m。计算跨度 L=10m。 荷载跨度 L1=9.6m;
- 2)主梁荷载 q=1/2p=71.5KN/m;
- 3) 横向隔板间距: 2.5m;
- $_{4)}$ 主梁容许挠度 $\left[\mathbf{u}\right] = \frac{L}{600}$;
 - (2) **主梁设计。**主梁设计包括: 〇1截面选择; ②梁高改变; ③翼缘焊缝; ④腹板局部稳定性验
- 算; ⑤面板局部弯曲与主梁整体弯曲的折算应力验算。
- 1) 截面选择。
 - 〇1弯矩与剪力。弯矩与剪力的计算如下:

$$M_{\text{max}} = \frac{1}{2} \times 71.5 \times 10 \times (\frac{10}{2} - \frac{9.6}{4}) = 929.5(KN \cdot m),$$

 $V_{\text{max}} = \frac{1}{2} q l_1 = \frac{1}{2} \times 71.5 \times 9.6 = 343.2 KN,$

图5 平面刚闸门的主梁位置计算简图

②需要的截面模量。已知 Q235 钢的容许应力 $[\sigma] = 160N / _{mm} _{2}$,考虑刚闸门自重引起的附加应力作用,取容许应力 $[\sigma] = 0.9 \times 160 = 144 \frac{N}{mm} _{2}$,则需要的截面模量数为

$$W = \frac{M_{\text{max}}}{[\sigma]} = \frac{929.5 \times 100}{144 \times 0.1} = 6455 \text{ (cm}^3);$$

○3腹板高度选择。按刚度要求的最小高粱为

$$h_{\min} = 0.96 \times 0.23 \frac{[\sigma]L}{E[v_I]} = 0.96 \times 0.23 \frac{144 \times 10^2 \times 10 \times 10^2}{2.06 \times 10^7 \times (1/600)} = 92.6 \text{ (cm)};$$

经济梁高
$$h_{ec} = 3.1W^{\frac{2}{5}} = 3.1 \times 6455^{\frac{2}{5}} = 1036 \text{ (cm)};$$

由于 刚闸门中的横向隔板重量将随增加,故主梁高宜选此 h_{oc} 小,但不小于 h_{min} 。 现在用腹板高度 h_0 =100cm。

〇4腹板厚度选择。按经验公式
$$t_{w} = \frac{\sqrt{h}}{11} = \frac{\sqrt{100}}{11} = 0.91 \, \mathrm{cm}$$
。选 $t_{w} = 1.0 \, \mathrm{cm}$ 。

○5翼缘截面选择。每个翼缘截面为

$$A_1 = \frac{W}{h_0} - \frac{t_w h_0}{6} = \frac{6455}{100} - \frac{1.0 \times 100}{6} = 48 \text{ (cm}^2\text{)};$$

下翼缘选用 t_1 =2.0cm.符合钢板要求。

需要
$$b_1 = \frac{A_1}{t} = \frac{48}{2} = 24 \text{ cm}$$
,选用 $b_1 = 25 \text{ cm}$ 。(在 $\frac{h}{2.5} \sim \frac{h}{5} = 40 \sim 20 \text{ cm}$ 之间)

上翼缘的部分截面可利用面板,故只需设较小翼缘板同面板连接,选用 t_1 =2.0cm, b_1 =12cm。

面板兼作主梁上翼缘的有效宽度取为

B=
$$b_1+60 \delta = 12+60 \times 0.8=60$$
(cm);

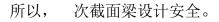
上翼缘截面面积为

$$A1=12\times 2.0+60\times 0.8=72$$
(cm²);

⑥弯应力强度验算。主梁跨中截面(图6)的几何特性见下表。截面形心矩为

$$y_1 = \frac{\sum Ay'}{\sum A} = \frac{10532.4}{232} = 45.4 \text{ (cm)};$$

截面惯性矩


$$I = \frac{t_w h_0^3}{12} + \sum Ay^2 = \frac{1 \times 100^3}{12} - 318827 = 402160 \text{ (cm}^4);$$

截面模量

上翼缘顶边:
$$W_{\min} = \frac{I}{y_1} = \frac{402160}{45.4} = 8858(\text{cm});$$

下翼缘底边:
$$W_{\text{min}} = \frac{I}{y_2} = \frac{402160}{59.4} = 6770$$
 (cm);

弯应力
$$\sigma = \frac{M_{\text{max}}}{W_{\text{min}}} = \frac{929.5 \times 100}{6770} = 13.73 < 0.9 \times 16 = 14.4 \text{ (KN/cm}^2);$$

主梁跨中截面的几何特性

			各形心离面			
			板		各形心离中和轴	
	截面尺寸	截面面积	表面距离	Ay'	距离	Ay^2
部位	(cmxcm)	(cm ²)	y' (cm)	(cm³)	y=y'-y ₁ (cm)	(cm ⁴)
面板部						
分	60x0.8	48	0.4	19.2	-45	97200
上翼缘						
板	12x2. 0	24	1.8	48. 2	-43.6	45623

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/926241210050010221