
CS 188: Artificial In ligence

Adversarial Search

Instructors: Pie bbeel & Dan Klein
University of California, Berkeley

[These slides were created by Dan Klein and Pie bbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Game ying State-of-the-Art

▪ Checkers: 1950: First computer yer. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

▪ Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic
programs use pattern knowledge bases, but big
recent advances use Monte Carlo (randomized)
expansion methods.

Game ying State-of-the-Art

▪ Checkers: 1950: First computer yer. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

▪ Go: 2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation
function.

▪ Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

 of Demo Mystery Pacman

Adversarial Games

▪ Many different kinds of games!

▪ Axes:

▪ Deterministic or stochastic?

▪ One, two, or more yers?

▪ Zero sum?

▪ Perfect information (can you see the state)?

▪ Want algorithms for calculating a strategy () whi ends a move
from each state

Types of Games

Deterministic Games

▪ Many possible formalizations, one is:

▪ States: S (start at s0)

▪ yers: P={1...N} (usually take turns)

▪ Actions: A (may depend on yer / state)

▪ Transition Function: SxA → S

▪ Terminal Test: S → {t,f}

▪ Terminal Utilities: SxP → R

▪ Solution for a yer is a : S → A

Zero-Sum Games

▪ Zero-Sum Games

▪ Agents have opposite utilities (values on
es)

▪ Lets us think of a single value that one
izes and the other minimizes

▪ Adversarial, pure competition

▪ General Games

▪ Agents have t utilities
(values on es)

▪ Cooperation, indifference, competition,
and more are all possible

▪ More later on non-zero-sum games

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable
e (utility) from that

state

Adversarial Game Trees

-20 -8 … -18 -5 … -10 +4 -20 +8

Minimax Values

+8-8 -5 -10

Terminal States:

States Under Agent’s Control: States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One yer izes result

▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree

▪ yers alternate turns

▪ Compute each node’s minimax value:
the best achievable utility a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Mini plementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Mini plementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Properties

Optimal a perfect yer. Otherwise?

10 10 9 100

max

min

[Demo: min v p (L6D2, L6D3)]

 of Demo Min vs. Exp (Min)

 of Demo Min vs. Exp (Exp)

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b  35, m  100
▪ Exact solution is comple y infeasible

▪ But, do we need to explore the whole
tree?

Resource Limits

Game Tree Pruning

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/92715104300

3006035

https://d.book118.com/927151043003006035
https://d.book118.com/927151043003006035

