CS 188: Artificial Intelligence

Adversarial Search

Instructors: Pietar Abbeel & Dan Klein
University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

Game Playing State-of-the-Art

= Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete

8-piece endgame. 2007: Checkers solved!
SoLVED! +

= Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. EAPERT
Current programs are even better, if less historic.

= Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic

programs use pattern knowledge bases, but big s
recent advances use Monte Carlo (randomized)
expansion methods.

ABR\CK =

O-\gckgrs CheSS

Pacman

Game Playing State-of-the-Art

Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete .

8-piece endgame. 2007: Checkers solved!
SoLVED! +

Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. EAPERT —\
Current programs are even better, if less historic. |

Chess: 1997: Deep Blue defeats human champion Qi?

Go: 2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation

. N+
function. b

Pacman

ABR\CK =

Checkers Chess Go

Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Adversarial Games

Types of Games

Many different kinds of games!

Axes:
Deterministic or stochastic?
One, two, or more players?
i - g — e —————. -

Zerosum?

Perfect information (can you see the state)?

Want algorithms for calculating a strategy (policy) which mends a move
from each state

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s)
= Players: P={1...N} (usually take turns)
= Actions: A (may depend on player / state)
= Transition Function: SXA — S
= Terminal Test: S — {t,f}
= Terminal Utilities: SxP —> R

= Solution for a player is a policy: S > A

Zero-Sum Games

Zero-Sum Games = General Games

Agents have opposite utilities (valueson = Agents have independent utilities

es) (values on es)

Lets us think of a single value that one = Cooperation, indifference, competition,
maximizes and the other minimizes and more are all possible

Adversarial, pure competition = More later on non-zero-sum games

Adversarial Search

Single-Agent Trees

€
/\

T T~ T T~
O B Ex

Value of a State

\
Value of a state: Non-Terminal States:
The best achievable e — o
(utility) f ' V(max .)l (s")
e (utl |ty rom that s’ €children
_ J

‘K"/’\"/T R

Terminal States:

V(s) = known

Adversarial Game Trees

/\
3 .@ |

T~ T T~
3 > N> - - N ¢~ i €. =

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s Vi(g') = min V(s)
s’ €successors(s) s€successors(s’)

Terminal States:

V(s) = known

Tic-Tac-Toe Game Tree

MAX (X)
X X X
MIN (0) X X X
X X X
X]o x| o] [x
MAX (X) 0
x[o[x] [x]o X|o
MIN (0) X X
x[o[x| [x[o[x] [x]o[x
TERMINAL o|x| [0]o[X X
o) x| x[o] [X[olo
Utility -1 0 +1

Adversarial Search (Minimax)

= Deterministic, zero-sum games: Minimax values:
) computed recursivel
= Tic-tac-toe, chess, checkers P y
= 4)
" One player maximizes result max
= The other minimizes result
min

* Minimax search: _ J

= A state-space search tree / \ / \

" Players alternate turns / \ / \

= Compute each node’s minimax value: s 2 2 2

the best achievable utility against a

: : Terminal values:
rational (optimal) adversary

part of the game

Minimax Implementation

/def max-value(state):)
initialize v = -o0
for each successor of state:
v = max(v, min-value(successor))
return v

- /
V(s) = max V(s

s’ €successors(s)

/def min-value(state):)
initialize v = +o0
for each successor of state:
v = min(v, max-value(successor))
return v

= _/
Vi(s') = min V(s)

sEsuccessors(s’)

Minimax Implementation (Dispatch)

(¢

ef value(state):

&

if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

\

)

Gef max-value(state): \
initialize v = -0
for each successor of state:

v = max(v, value(successor))
return v

_ J

p

Gef min-value(state): \
initialize v = +o0
for each successor of state:

v = min(v, value(successor))
return v

_ J

Minimax Example

Minimax Properties

max

min

10 10 9 100

Optimal against a perfect player. Otherwise?

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

I
@

" How efficient is minimax?
= Just like (exhaustive) DFS
" Time: O(b™)
= Space: O(bm)

= Example: For chess, b = 35, m = 100
» Exact solution is completely infeasible

= But, do we need to explore the whole
tree?

Resource Limits

Game Tree Pruning

PLEAB AR SRR TS, AW RSB —FEHNE.
BERREE4A, BiH: https://d. book118. com/92715104300
3006035

https://d.book118.com/927151043003006035
https://d.book118.com/927151043003006035

