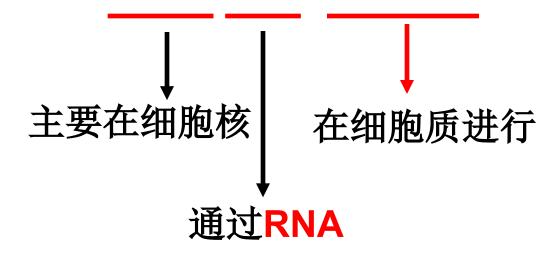

关于基因指导蛋白质的合成讲课



基因指导蛋白质合成的过程,叫基因的表达。

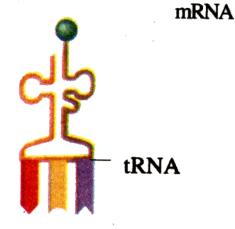
问题: 基因是怎样指导蛋白质的合成呢?

第1节 基因指导蛋白质的合成

问题:为什么RNA适于作DNA(基因)的信使?

- · RNA是由基本单位——核苷酸连接而成,跟DNA一样能储存遗传信息。
- · RNA一般为单链,比DNA短,能通过 核孔,从细胞核转移到细胞质中。
- · RNA与DNA的关系中,也遵循"碱基 互补配对原则"。因此以RNA为媒介 可将遗传信息传递到细胞质中。

RNA与DNA的比较


核酸项目	RNA	DNA
基本组成 单位	核糖核苷酸	脱氧核苷酸
五碳糖	核糖	脱氧核糖
无机酸	磷酸	磷酸
碱 基	A, G, C, U	A、G、C、T
单双链	通常是单链结构	通常是规则的 双螺旋结构
分子大小	比较小	很大

三种RNA示意图

信使RNA:

遗传信息传递的媒介。

转运RNA:

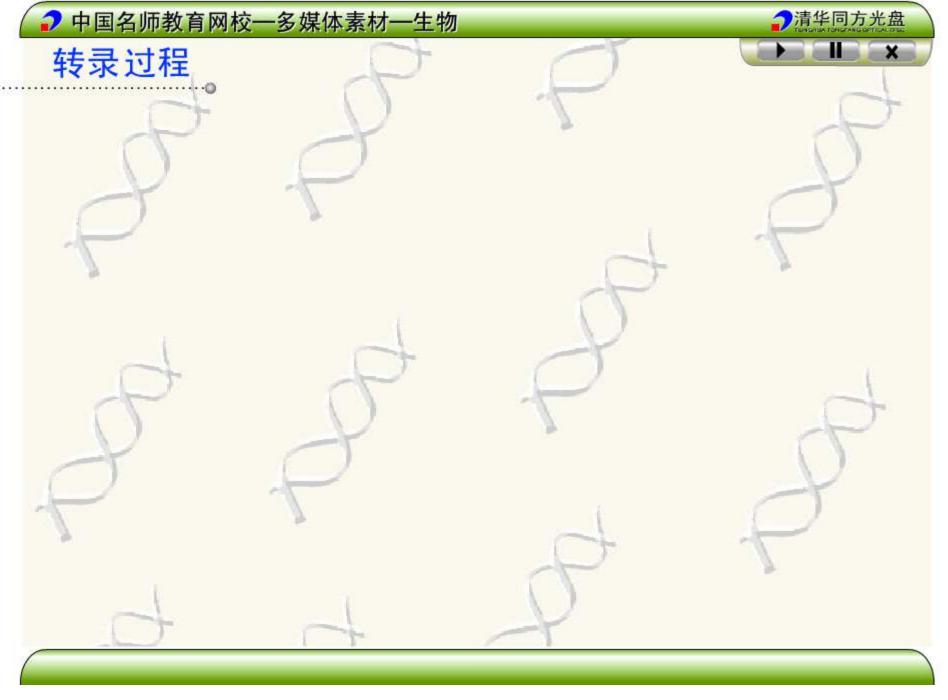
转运氨基酸的工具。

核糖体RNA:

与蛋白质构成核糖体。

DNA的遗传信息是怎样传给mRNA的?

转录

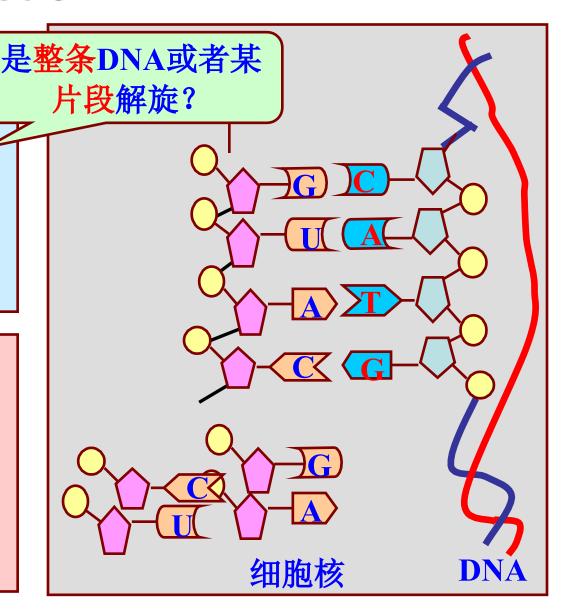

请同学们阅读课本P63的第四自然段和图4-4,然 后完成下列填空。

(1) 转录的定义:

- (2) 转录的场所:
- (3) 转录的模板:
- (4)转录的原料:
- (5) 转录的条件:
- (6) 转录时的碱基配对:
- (7) 转录的结果:

- (1)转录的定义:在细胞核中以DNA的一条链为模板, 按碱基互补配对原则原则,合成 mRNA的过程
- (2) 转录的场所: 细胞核
- (3) 转录的模板: DNA的一条链
- (4)转录的原料:四种核糖核苷酸(A、G、C、U)
- (5) 转录的条件: 需要酶和ATP
- (6) 转录时的碱基配对: 碱基互补配对原则 (A=U, G=C)
- (7) 转录的结果:mRNA

转录(一)

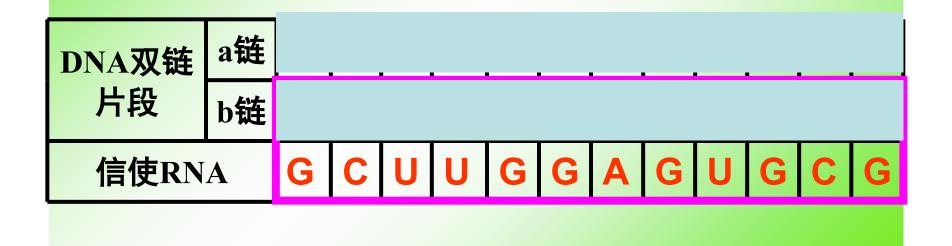

(一) 过程:

内容

- 1、DNA双链解旋
- 2、碱基配对;
- 3、聚合;

条件

- 1、DNA解旋酶
- 2、模板: DNA链
- 3、原料:核苷酸
- 4、RNA聚合酶



复制与转录的比较

	复制	转录
场所	细胞核	细胞核
解旋	完全解旋	只解有遗传效应的片段
模板	DNA的两条链	只有DNA的一条链
原料	4种脱氧核苷酸	4种核糖核苷酸
酶	DNA解旋酶、DNA聚合酶	RNA聚合酶
能量	ATP	ATP
碱基配对	G-C, C-G, T-A, A-T	G-C, C-G, T-A, <u>A-U</u>
产物	子代DNA	mRNA

按照碱基配对原则,

- 1、写出以b链为模板转录形成的mRNA碱基序列,
- 2、写出b链对应的a链的碱基序列。

比较mRNA和b链,以及mRNA和a链的碱基序列的差异。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/928041103023006064