立足基础和素养

突出应用和

创新

以2022年新高考全国1卷17题(数列)为例

说题流程

真题再现及溯源

 $(2022 全国1卷17题)记S_n为数列<math>\{a_n\}$ 的前n项和,已知 $a_1 = 1$,

$$\left\{\frac{S_n}{a_n}\right\}$$
是公差为 $\frac{1}{3}$ 的等差数列

(1)求 $\{a_n$ 的通项公式;

(2)证明:
$$\frac{1}{a_1} + \frac{1}{a_2} + L + \frac{1}{a_n} < 2$$
.

本部分知识可见于人教B版 选择性必修第三册第五章.

真题再现及溯源

4. 已知数列 $\{a_n\}$ 的前 n 项和公式为 $S_n = -2n^2$,求 $\{a_n\}$ 的通项公式.

P13

P44

P56

- 11. 已知数列 $\{a_n\}$ 的首项 $a_1 = \frac{3}{5}$,且满足 $a_{n+1} = \frac{3a_n}{2a_n+1}$.
 - (1) 求证:数列 $\left\{\frac{1}{a}-1\right\}$ 为等比数列.

(2) 若 $\frac{1}{a_1}$ + $\frac{1}{a_2}$ + $\frac{1}{a_3}$ + \cdots + $\frac{1}{a_n}$ <100, 求满足条件的最大整数 n.

4. 已知数列 $\frac{1}{1\times 4}$, $\frac{1}{4\times 7}$, $\frac{1}{7\times 10}$, …, $\frac{1}{(3n-2)(3n+1)}$, …的前 n 项和为 S_n . 计算 S_1 , S_2 , S_3 , S_4 , 由此猜想 S_n 的表达式, 并用数学归纳法证明.

11. 已知等差数列 $\{a_n\}$ 的前n 项和为 S_n , 且 $S_4=4S_2$, $a_{2n}=2a_n+1$ $(n \in \mathbb{N}^*)$.

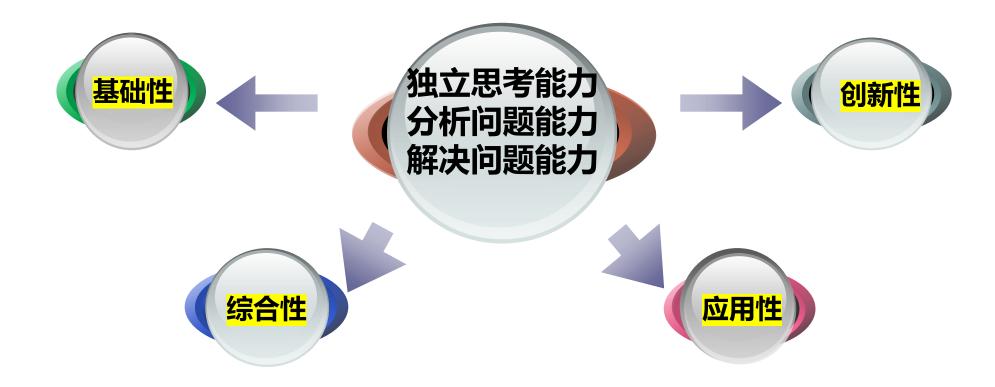
- (1) 求数列{a_n}的通项公式;

P58

02

考点分析

	_																	
知识板块	题型及题号													分值		占比 (%)		
	单选题			多选题			填空题			解答题								
年份	2023	2022	2021	2023	2022	2021	2023	2022	2021	2023	2022	2021	2023	2022	2021	2023	2022	
函数导数	4	7	7	10、11	10、12		15	15	13、15	19	22	22	32	32	27	21.3	21.3	
立体几何		4、8	3	12	9	12	14			18	19	20	22	27	22	14. 7	18	
解析几何	5, 6		5		11	11	16	14, 16	14	22	21	21	27	27	27	18	18	
概率统计		5	8	9		9	13	13		21	20	18	22	22	22	14. 7	14. 7	
三角向量	3、8	3, 6	4, 6			10				17	18	19	20	22	27	13. 3	14.7	
数列	7								16	20	17	17	17	10	15	11.3	6. 7	
集合	1	1	1										5	5	5	3. 3	3. 3	
复数	2	2	2										5	5	5	3. 3	3. 3	


2022年新高考全国1卷17题主要考察了数列的通项、数列前n项和与通项的关系、常规的数列求和的技巧及数列与不等式的综合应用。

(一)命题立意

试题以学生熟悉的等差数列为载体而设计,但不是通常的给定等差数列求通项、求和等常规操作,而是将等差数列的性质融合在前n项和与通项的关系之中,特别是第(2)问中的数列的求和运算涉及裂项相消。试题源于教材,其创新思想又高于教材,充分体现高考的选拔功能。试题对高中数学教学具有指导作用,要求学生在强化基本功的同时,加强对知识的灵活运用,形成学科素养。

新高考评价体系(一核四层四翼)

必备知识,关键能力,学科素养,核心价值

(二)核心素养

高中数学学科六大核心素养:数学抽象,逻辑推理, 数学建模,数学运算,直观想象和数据分析。

本题考察了学生的逻辑推理、数学运算的学科素养。

04

解题思路与方法总结

 $(2022 全国1卷17题)记S_n为数列<math>\{a_n\}$ 的前n项和,已知 $a_1 = 1$,

$$\left\{\frac{S_n}{a_n}\right\}$$
是公差为 $\frac{1}{3}$ 的等差数列.

(1)求 $\{a_n\}$ 的通项公式;

思路:利用 a_n 与 S_n 的关系消去 a_n ,与 a_n 相关的累乘沿

思路:消元

构造an相关新数列

思路4:消元

构造S。相关新数列

思路2:利用 a_n 与 S_n 的关系消去 a_n ,累乘法得 a_n ,再求 a_n

解题思路与方法总结

解法1:(1)因为
$$\frac{S_n}{a_n} = \frac{S_1}{a_1} + \frac{1}{3}(n-1) = \frac{n+2}{3}$$
,

所以
$$S_n = \frac{n+2}{3}a_n$$
;

所以
$$S_{n+1} = \frac{n+3}{3}a_{n+1}$$
;

所以
$$a_{n+1} = S_{n+1} - S_n = \frac{n+3}{3} a_{n+1} - \frac{n+2}{3} a_n$$

计算可得
$$\frac{a_{n+1}}{a_n} = \frac{n+2}{n}$$
;

当
$$n \ge 2$$
且 $n \in N^*$ 时, $\frac{a_n}{a_1} = \frac{a_n}{a_{n-1}} \times \frac{a_{n-1}}{a_{n-2}} \times L \times \frac{5}{3} \times \frac{4}{2} \times \frac{3}{1} = \frac{n(n+1)}{2}$,

利用 a_n 与 S_n 的关系消去 S_n , 与 a_n 相关的累乘法

解题思路与方法总结

所以
$$a_n = \frac{n(n+1)}{2}$$
,
又 $a_1 = 1$ 也符合上式,
所以 $a_n = \frac{n(n+1)}{2} (n \in N^*)$.

解题思路与方法总结

解法 2:(1) 因为 $a_1 = 1$, 所以 $\frac{s_1}{a_1} = 1$,

所以
$$\frac{S_n}{a_n} = 1 + (n-1) \times \frac{1}{3} = \frac{n+2}{3}$$
.

因为当 $n \geq 2$ 时, $a_n = S_n - S_{n-1}$,

所以
$$\frac{S_n}{S_n - S_{n-1}} = \frac{n+2}{3} (n \ge 2)$$
, 所以 $\frac{S_n - S_{n-1}}{S_n} = \frac{3}{n+2} (n \ge 2)$,

整理得
$$\frac{S_n}{S_{n-1}} = \frac{n+2}{n-1} (n \ge 2),$$

所以
$$\frac{S_2}{S_1} \times \frac{S_3}{S_2} \times L \times \frac{S_{n-1}}{S_{n-2}} \times \frac{S_n}{S_{n-1}} = \frac{4}{1} \times \frac{5}{2} \times L \times \frac{n+1}{n-2} \times \frac{n+2}{n-1}$$

$$= \frac{n(n+1)(n+2)}{6}(n \geq 2),$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/945333344040011323