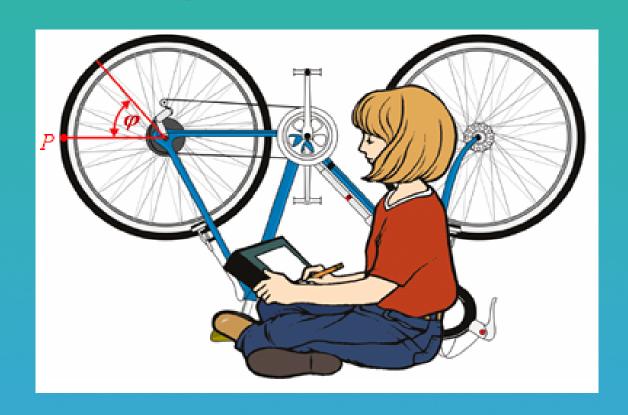
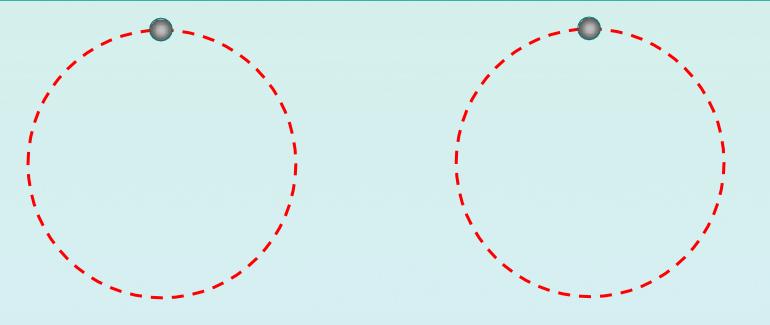


第4节 圆周运动



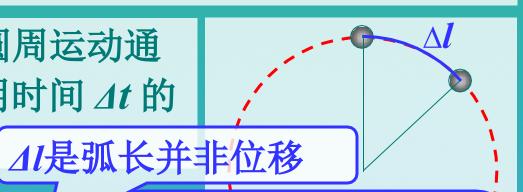
在物理学中,把质点的运动轨迹是圆或圆弧的一部分的运动叫做圆周运动。



思考与讨论(P₁₆)

自行车的大齿轮,小齿轮,后轮中的质点都在做圆周运动。哪些点运动得更快些?

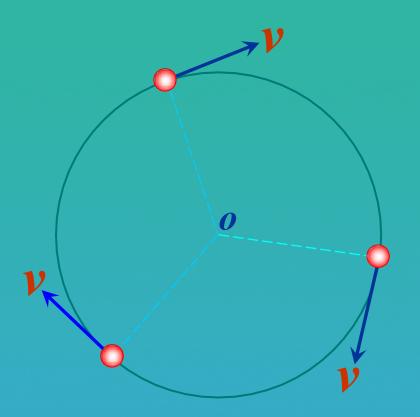
两物体均做圆周运动,怎样比较它们运动的快慢?


比较物体 在一段时间 的圆弧的 长短

 比较物体 在一段时间 间内半径 转过的角 度大小 比较在段内的圈块的圈数

矢量

- 1、物理意义: 描述质点沿圆周运动的快慢。
- 2、定义: 质点做圆周运动通过的弧长 △l 和所用时间 △t 的比值叫做线速度。


3、大小:

$$v = \frac{\Delta l}{\Delta t}$$

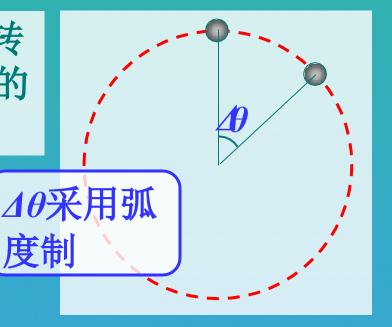
4、单位: m/s

当/It 很小很小趋近零时,弧长/II 就等于物体的位移,式中的v就是直线运动中学过的瞬时速度。

5、方向: 沿圆周上该点的切线方向。

定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。

注意: 匀速圆周运动是一种变速曲线运动


速度方向在变化

匀速圆周运动中的"匀速"指速度不变吗?

1、物理意义: 描述质点转过圆心角的快慢。

2、定义: 质点所在的半径转过圆心角 $\Delta\theta$ 和所用时间 Δt 的比值叫做角速度。

3、大小:

$$\omega = \frac{\Delta \theta}{\Delta t}$$

4、单位: rad/s

说明: 匀速圆周运动是角速度不变的运动。

转速	周期	频率
物体在单位 时间所转过 的圈数	物体运动 一周所用 的时间	物体在单位 时间所转过 的 照 数
n		
r/s或r/win		1
力		memory.zol.com.cn 内存硬盘频道

频率/转速越大表明物体运转得越¹/_{7200r/min} 周期越小表明物体运动得越快!

描述匀速圆周运动快慢的物理量

线速度是矢量,它既有大小,也有方向

$$2$$
、角速度 $\omega = \frac{\Delta \theta}{\Delta t}$ 单位:rad/s

- 3、转速: n 单位: 转/秒 (r/s) 或 转/分 (r/min)
- 4、周期:T 单位:s
- 5、频率:f 单位: Hz或s⁻¹

小试身手

1、做匀速圆周运动的物体,线速度<u>大小</u>不变, 方向时刻在变,线速度是变量(恒量或变量), 匀速圆周运动的性质是<u>变速曲线运动</u>, 匀速的含义是线速度的大小不变。

- 2、对于做匀速圆周运动的物体,下列说法 正确的是: (A B D)
- A、相等的时间里通过的路程相等
- B、相等的时间里通过的弧长相等
- C、相等的时间里发生的位移相同
- D、相等的时间里转过的角度相等
- E、相等的时间里平均速度相同

线速度、角速度与周期的关系?

设物体做半径为 r 的匀速圆周运动:

线速度与周期的关系:

$$v = \frac{2\pi r}{T}$$

角速度与周期的关系:

$$\omega = \frac{2\pi}{T}$$

线速度与角速度的关系?

设物体做半径为r的匀速圆周运动,在 Δt 内通过的弧长为 Δl ,半径转过的角度为 $\Delta \theta$

由数学知识得 $\Delta l = r\Delta \theta$

$$v = \frac{\Delta l}{\Delta t} = \frac{r\Delta\theta}{\Delta t} = r\omega$$

$$v = r_{\omega}$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/958011025043006051